دسته بندی | کامپیوتر و IT |
فرمت فایل | doc |
حجم فایل | 71 کیلو بایت |
تعداد صفحات فایل | 10 |
صف کاربردهای زیادی در علم کامپیوتر دارد یکی از کاربردهای مهم صف در شبیه سازی است . صف ، در پیاده سازی جنبه های مختلف سیستم عامل است . محیط چند برنامه ای ، برای کنترل برنامه ها از چندین صف استفاده می کند . علاوه بر این ، صف در پیاده سازی بسیاری از الگوریتم ها مفیداست . به عنوان مثال ، الگوریتم های زمان بندی به وفور از صف استفاده می کنند .
درمحیط چند برنامه ای ، یک پردازنده ، همزمان به چند برنامه خدمات ارائه می کند . در این بخش ، اهمیت صف را برای مدیریت برنامه ها در چنین محیطی بررسی خواهیم کرد.
یک محیط چند برنامه ای را در نظر بگیرید که کارهایی که پردازنده باید انجام بدهد به سه دسته تقسیم می شوند :
1.وقفه هایی که باید پاسخ داده شوند دستگاه و پایانه های زیادی به پردازنده وصل هستند و ممکن است در هر لحظه ای برای دریافت خدمات ، وقفه هایی را صادر کنند . این کارها را فرآیندهای سیستم می نامیم .
2.کاربران محاوره ای که باید خدمات بگیرند معمولاً این ها برنامه های دانشجویان مختلفی هستند که در حالت اجرا قرار دارند .
3.کارهای دسته ای که باید خدمات بگیرند این برنامه ها مربوط به کاربران غیر محاوره ای است که اجرای آن ها معمولاً طول می کشد . هنگام تحویل این برنامه ها به سیستم ، تمام ورودی های آن ها نیز به سیستم وارد می شوند . برنامه های شبیه سازی ، و کارهای چاپ اسناد از این نوع اند .
در این جا مسئله این است که تمام کارها طوری زمان بندی شوند که کارایی مطلوب حاصل شود . یک روش پیاده سازی زمان بندی پیچیده ، دسته بندی کارها بر حسب ویژگی های آن ها است ، به طوری که برای هر دسته از کارها یک صف جداگانه در نظر گرفته شود . لذا ، در مثال مورد نظر ما ، سه صف خواهیم داشت که در بالا مشاهده می شود. این روش را زمان بندی صف چند سطحی می نامند . هرفرآیند ( یا کار ) در صف مخصوص به خود قرار می گیرد. در این حالت ، پردازنده براساس نوع اولویت صف ، به فرایند های آن صف پاسخ می دهد . در یک راهبرد ساده ، فرآیند های موجود در صفی با اولویت بیشتر (مثلا صف فرآیندهای سیستم ) خدمات می گیرند تا صف خالی شود . سپس پردازنده به صف فرآیند های محاوره ای با اولویت متوسط می رود و در نهایت به صف کارهای دسته ای می پردازد .
البته ، اگر فرآیندی درحال اجرا باشد و فرآیند دیگری با اولویت بیشتر به همان صف وارد شود ، فرآیند درحال اجرا توسط فرآیند با اولویت بیشتر قبضه می شود ، یعنی آن را از حالت اجرا خارج می کند و خودش اجرا می شود .
راهبرد صف چند سطحی یک نظام کلی است ولی عیب هایی دارد . عیب عمده اش این است که اگر فرآیند های صف با اولویت بالا زیاد باشند ، فرآیند های موجود در صف هایی با ا ولویت پایین تر ، باید مدت زیادی منتظر بمانند .
. یک روش حل این مسئله این است که...
دسته بندی | صنایع |
فرمت فایل | zip |
حجم فایل | 11235 کیلو بایت |
تعداد صفحات فایل | 251 |
مقدمه بر مدیریت پروژه
تعریف پروژه
ویژگی های پروژه
فاز طراحی
فاز تعریف پروژه
فاز برنامه ریزی(Planning)
کاهش Reduction
تعریف اول(1,n,dag)
immediate dominator
الگوریتم
ساخت Complexity Graph یا CG
شبکه های(Activity and Node ) AON
(Cut) تعریف اول
طبقه بندی از مسائل زمانبندی پروژه
زمانبندی پروژه با منابع نامحدود
شناوری آزاد
شناوری اطمینان
مساله
و ...
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 40 کیلو بایت |
تعداد صفحات فایل | 35 |
1-2) EZW
الگوریتم EZW در سال 1993 توسط shapiro ابداع شد نام کامل این واژه [1] به معنای کدینگ تدریجی با استفاده از درخت ضرایب ویولت است. این الگوریتم ضرایب ویولت را به عنوان مجموعه ای از درختهای جهت یابی مکانی در نظر می گیرد هر درخت شامل ضرایبی از تمام زیرباندهای فرکانسی و مکانی است که به یک ناحیه مشخص از تصویر اختصاص دارند. الگوریتم ابتدا ضرایب ویولت با دامنه بزرگتر را کددهی می کند در صورتیکه دامنه یک ضریب بزرگتر یا مساوی آستانه مشخص باشد ضریب به عنوان ضریب معنی دار [2] در نظر گرفته می شود و در غیر اینصورت بی معنی[3] می باشد یک درخت نیز در صورتی معنی دار است که بزرگترین ضریب آن از نظر دامنه بزرگتر یا مساوی با آستانه مورد نظر باشد و در غیراینصورت درخت بی معنی است.
مقدار آستانه در هر مرحله از الگوریتم نصف می شود و بدین ترتیب ضرایب بزرگتر زودتر فرستاده می شوند در هر مرحله، ابتدا معنی دار بودن ضرایب مربوط به زیر باند فرکانسی پایین تر ارزیابی می شود اگر مجموعه بی معنی باشد یک علامت درخت صفر استفاده می شود تا نشان دهد که تمامی ضرایب مجموعه صفر می باشند در غیراینصورت مجموعه به چهارزیرمجموعه برای ارزیابی بیشتر شکسته می شود و پس از اینکه تمامی مجموعه ها و ضرایب مورد ارزیابی قرار گرفته اند این مرحله به پایان می رسد کدینگ EZW براساس این فرضیه استوار است که چگالی طیف توان در اکثر تصاویر طبیعی به سرعت کاهش می یابد بدین معنی که اگر یک ضریب در زیر باند فرکانسی پایین تر کوچک باشد به احتمال زیاد ضرایب مربوط به فرزندان آن در زیر باندهای بالاتر نیز کوچک هستند به بیان دیگر اگر یک ضریب والد بی معنی باشد به احتمال زیاد فرزندان آن نیز بی معنی هستند اگر آستانه ها توانهایی از دو باشند میتوان کدینگ EZW را به عنوان یک کدینگ bit-plane در نظر گرفت در این روش در یک زمان، یک رشته بیت که از MSB شروع می شود کددهی می شود با کدینگ تدریجی رشته بیت ها و ارزیابی درختها از زیرباندهای فرکانسی کمتر به زیرباندهای فرکانسی بیشتر در هر رشته بیت میتوان به کدینگ جاسازی [4] دست یافت.
الگوریتم EZW بر پایه 4 اصل استوار است [3]
1- جدا کردن سلسله مراتبی زیرباندها با استفاده از تبدیل ویولت گسسته
1-1-2) تبدیل ویولت گسسته
تبدیل ویولت سلسله مراتبی که در EZW و SPIHT مورد استفاده قرار می گیرد نظیر یک سیستم تجزیه زیرباند سلسله مراتبی است که در آن فاصله زیرباندها در مبنای فرکانس بصورت لگاریتمی است.
در شکل 2-2 یک مثال از تجزیه دو سطحی ویولت روی یک تصویر دو بعدی نشان داده شده است. تصویر ابتدا با بکارگیری فیلترهای افقی و عمودی به چهار زیرباند تجزیه میشود. در تصویر (c ) 2-2 هر ضریب مربوط به ناحیه تقریبی 2×2 پیکسل در تصویر ورودی است. پس از اولین مرحله تجزیه سه زیر باند LH1 , HL1 و HH1 بعنوان زیرباندهای فرکانس بالایی در نظر گرفته می شوند که به ترتیب دارای سه موقعیت عمودی، افقی و قطری می باشند اگر Wv , Wh به ترتیب فرکانسهای افقی و عمودی باشند، پهنای باند فرکانسی برای هر زیر باند در اولین سطح تجزیه ویولت در جدول
1-2 آمده است[4]
جدول 2-1 ) پهنای باند فرکانسی مربوط به هر زیر باند پس از اولین مرحله تجزیه ویولت با استفاده از فیلترهای مشابه (پایین گذر و بالاگذر) زیر باند LL1 پس از اولین مرحله تجزیه ویولت، مجدداً تجزیه شده و ضرایب ویولت جدیدی به دست می آید جدول 2-2) پهنای باند مربوط به این ضرایب را نشان می دهد.
2-1-2) تبدیل ویولت بعنوان یک تبدیل خطی
میتوان تبدیل بالا را یک تبدیل خطی در نظر گرفت [5]. P یک بردار ستونی که درایه هایش نشان دهنده یک اسکن از پیکسلهای تصویر هستند. C یک بردار ستونی شامل ضرایب ویولت به دست آمده است از بکارگیری تبدیل ویولت گسسته روی بردار p است. اگر تبدیل ویولت بعنوان ماتریس W در نظر گرفته شوند که سطرهایش توابع پایه تبدیل هستند میتوان تبدیل خطی زیر را در نظر گرفت.
فرمول
بردار p را میتوان با تبدیل ویولت معکوس به دست آورد.
فرمول
اگر تبدیل W متعامد [5] باشد. است و بنابراین
فرمول
در واقع تبدیل ویولت W نه تنها متعامد بلکه دو متعامدی [6] می باشد.
3-1-2) یک مثال از تبدیل ویولت سلسله مراتبی
یک مثال از تبدیل ویولت سلسله مراتبی در این بخش شرح داده شده است. تصویر اولیه 16*16 و مقادیر پیکسلهای مربوط به آن به ترتیب در شکل 3-2 و جدول 3-2 آمده است.
یک ویولت چهارلایه روی تصویر اولیه اعمال شده است. فیتلر مورد استفاده فیلتر دو متعامدی Daubechies 9/7 است [6]. جدول 4-2 ضرایب تبدیل گرد شده به اعداد صحیح را نشان می دهد. قابل توجه است که ضرایب با دامنه بیشتر در زیرباندهای با فرکانس کمتر قرار گرفته اند و بسیاری از ضرایب دامنه های کوچکی دارند ویژگی فشرده سازی انرژی در تبدیل ویولت در این مثال به خوبی دیده می شود جدول 5-2 تصویر تبدیل یافته و کمی شده را نشان می دهد چنانکه کمی سازی تنها برای اولین سطح ویولت انجام گرفته است یک ضریب مقیاس 25/0 در هر ضریب فیلتر ویولت ضرب شده و سپس مجموعه فیلتر پاین گذر و بالاگذر روی تصویر اولیه بکار گرفته می شود اندازه گام کمی سازی مربوطه در این حالت 16 است.
پس از کمی سازی بیشتر ضرایب در بالاترین زیر باند فرکانسی صفر می شوند تصویربازسازی شده و تبدیل ویولت معکوس در شکل (b) 7-2 و جدول 6-2 آمده است. به علت کمی سازی بازسازی با اتلاف است.
4-1-2) انتقال تدریجی تصویر [1]
اگر یک تبدیل متعامد و سلسله مراتبی زیر باند، p یک ماتریس از اسکن پیکسلهای pi,j که (i, j) مختصات پیسک است و c ماتریس مربوط به ضرایب تبدیل یافته باشد، آنگاه:
فرمول
c ماتریسی است که باید کد شود.
در یک کدینگ کامل EZW ، ؟؟ ماتریس بازسازی C اولیه را برابر صفر قرار می دهد و با دریافت هر بیت آنرا تغییر می دهد.
فرمول
هدف اصلی در انتقال تدریجی این است که ابتدا، اطلاعات مهمتر تصویر فرستاده شود. ارسال درست این اطلاعات خطا را تا میزان زیادی کاهش می دهد. بنابراین نکته مهم، انتخاب اطلاعات مهمتر در C است. معیار متوسط مربعات خطا بعنوان یک معیار سنجش خطا مورد استفاده قرار می گیرد.
فرمول
که N تعداد پیکسلهای تصویر اولیه است. با توجه به اینکه Euclidean norm در تبدیل متعامد حفظ می شود میتوان گفت
فرمول
معادله نشان می دهد که با دریافت ضریب انتقال Ci,j در دیکدر ، DMSE به اندازه
فرمول
کاهش می یابد. واضح است با ارسال ضرایب بزرگتر در ابتدا، خطای تصویربازسازی شود. کاهش بیشتر خواهد داشت.
علاوه بر آن اگر Ci,j بصورت باینری باشد اطلاعات را میتوان بصورت تدریجی ارسال نمود. به بیان دیگر MSB که مهمترین بیت است در ابتدا و LSB که کم اهمیت ترین بیت است در آخر فرستاده می شود.
5-1-2) درخت جهت یابی مکانی
ایجاد و تقسیم بندی مجموعه ها با استفاده از ساختار ویژه ای به نام درخت جهت یابی مکانی انجام می شود این ساختار بگونه ای است که از ارتباط مکانی میان ضرایب ویولت در سطوح مختلف هرم زیرباندها [7] استفاده می کند.
درختهای جهت یابی مکانی در شکل 59-5 برای یک تصویر 16*16 نشان داده شده است. زیرباند LL2 مجدداً به چهار گروه که هر یک شامل 2×2 ضریب است تقسیم می شود در هر گروه هر یک از چهار ضریب (شکل دو سطح پایین گذر و بالاگذر دارد و هر سطح به چهار زیر باند تقسیم می شود).
به غیر از ضریبی که در سمت چپ و بالا قرار گرفته و با رنگ خاکستری مشخص شده است ریشة یک درخت جهت یابی مکانی است پیکانها نشان می دهند که چگونه سطوح مختلف این درختها به هم مربوطند به طور کلی یک ضریب در موقعیت (i,j) در تصویر والد چهار ضریب در موقعیتهای (2i,2y) ، (2i+1,2y) ، (2i,2y+1) و (2i+1 , 2y+1) است ریشه های درختهای جهت یابی مکانی مربوط به این مثال در زیر باند LL2 قرار گرفته اند هر ضریب ویولت به غیر از آنهایی که با رنگ خاکستری مشخص شده اند و برگها میتواند ریشه برخی زیر درختهای جهت یابی مکانی باشند.
در این مثال اندازه زیر باند LL2 برابر 4×4 است و بنابراین به چهار گروه 2×2 تقسیم شده است. تعداد درختها در این مثال 12 تا است که برابر 4 /3 اندازه بالاترین زیر باند LL است.
هر کدام از 12 ریشه در زیر باند LL2 والد چهار فرزند استا که در سطح مشابهی قرار گرفته اند. فرزندان این فرزندان در سطح یک قرار می گیرند. عموماً ریشه های درختها در بالاترین سطوح، فرزندان آنها در سطحی مشابه از آن پس فرزندان ضرایبی که در سطح k قرار دارند در سطح k-1 قرار می گیرند.
بطور کلی میتوان گفت پس از تبدیل ویولت یک تصویر را میتوان با ساختار درختی آن نشان داد که در آن یک ضریب در زیر باند پایین میتواند چهار فرزند در زیر باند بالاتر داشته باشد و هر یک از این چهار فرزند میتوانند چهار فرزند دیگر در زیرباندهای بالاتر داشته باشند. به ساختاری که در این حالت پدید می آید.
درخت چهارتایی[8] گفته می شود که هر ریشه [9] چهارگره[10] دارد. نکته بسیار مهم نوع شماره گذاری موقعیت مکانی خانه ها (ضرایب) است. ضریبی که در پایین ترین سطح و در گوشه بالا در سمت چپ قرار داد دارای موقعیت مکانی (0 و 0 ) خواهد بود و به همین ترتیب ضرایب بعدی اضافه می شوند. اگر این موقعیت گذاری رعایت نشود جواب درستی به دست نمی آید [7].
6-1-2) درخت صفر
همانگونه که قبلاًاشاره شد میان زیرباندهای مجاوری که در موقعیت مکانی مشابه قرار گرفتهاند نوعی وابستگی داخلی وجود دارد این بدان معناست که اگر ضریب مربوط به یک والد در تک آستانه مشخص بی معنی باشد به احتمال زیاد ضرایب مربوط به فرزندان نیز در مقایسه با استانه جاری بی معنی خواهد بود و این امر تأیید کننده نزولی بودن چگالی طیف توان در تصاویر طبیعی می باشد در الگوریتم EZW و الگوریتمهای مشابه این رابطه والد و فرزندی برای bitplane مربوط به باارزشترین بیت bit plante (MSB) مربوط به کم ارزشترین بیت (LSB) بکار برده می شود.
معنی دار بودن ضرایب با توجه به آستانه داده شده تعیین می گردد و آستانه در هر مرحله نصف می شود. ضرایب در هر مرحله با آستانه مقایسه می شود و با توجه به این مقایسه در bitplane مربوطه مقدار o یا 1 به آنها اختصاص داده می شود.
یک درخت صفر درختی است متشکل از ضرایبی که همگی در مقایسه با آستانه جاری بی معنی هستند در اکثر موارد درختهای صفر زیادی در یک bit plane وجود دارد. استفاده از نمایش درخت صفر برای یک ریشه به معنای بی معنی بودن تمام فرزندان آن در مقایسه با آستانه فعلی می باشد و این امر به فشرده سازی کمک شایانی می کند.
7-1-2) کدگذاری در الگوریتم EZW
در این الگوریتم دو لیست با نامهای DL [11] و SL مورد استفاده قرار می گیرند. لیست DL شامل مختصات ضرایبی است که معنی دار نیستند. لیست SL شامل بزرگی (نه مختصات) ضرایبی است که معنی دار می باشند هر دوره انجام الگوریتم شامل یک گذار اصلی[12] می باشد که در ادامه آن یک گذار فرعی [13] می آید. گامهای اصلی الگوریتم به ترتیب زیر است:
1- مقداردهی اولیه
الف) مختصات تمامی ضرایب ویولت در لیست DL قرار می گیرد.
ب ) تنظیم آستانه اولیه :
فرمول
که Ci,y ضریب ویولت می باشند.
2- گذار اصلی
تمامی ضرایب در یک مسیر از پیش تعیین شده اسکن می شوند این مسیر طبق چند الگو تعریف می شود. انتخاب مناسب هر یک از این الگوها می تواند نقش مهمی در افزایش کارایی الگوریتم داشته باشد. شکل با مقایسه هر یک از ضرایب لیست DL با آستانه جاری T یکی از چهار علامت زیر بعنوان علامت مشخصه ضریب در نظر گرفته می شود.
الف) در صورتیکه ضریب در مقایسه با آستانه جاری T معنی دار مثبت باشد علامت PS [14] بعنوان خروجی در نظر گرفته می شود. هنگامیکه این علامت ورودی دیکدر قرار گیرد ضریب را برابر T5/1 قرار می دهد.
ب) در صورتیکه ضریب در مقایسه با آستانه جاری T معنی دار و منفی باشد علامت NS [15] بعنوان خروجی در نظر گرفته می شود. هنگامیکه این علامت ورودی دیکدر قرار گیرد ضریب را برابر T5/1- قرار می دهد.
ج) در صورتیکه یک ضریب در مقایسه با آستانه جاری معنی دار نباشد ولی بعضی از فرزندان آن معنی دار باشند علامت IZ [16] (صفر منفرد) بعنوان خروجی در نظر گرفته می شود.
د) در صورتیکه یک ضریب و تمام فرزندان آن در مقایسه با آستانه جاری بی معنی باشند علامت ZTR [17] (درخت صفر) بعنوان خروجی در نظر گرفته می شود. نکته مهم این است که لازم نیست نسلهای این درخت صفر در تکرار جاری کدگذاری شوند. هنگامیکه این علامت ورودی دیکدر قرار می گیرد، به ضریب و تمامی ضرایب مربوطه به نسلهای آن مقدار صرف نسبت می دهد. مقدار این ضرایب در تکرارهای متوالی اصلاح میشود.
ضرایبی که با علامت PS و NS مشخص شده اند در لیست SL قرار گرفته و مقادیر آنها bitplane مربوطه صفر می شود فلوچارت مربوطه به دسته بندی
دسته بندی | علوم انسانی |
فرمت فایل | doc |
حجم فایل | 38 کیلو بایت |
تعداد صفحات فایل | 23 |
مقاله بررسی ماتریس الگوریتم در 23 صفحه ورد قابل ویرایش
-2) EZW
الگوریتم EZW در سال 1993 توسط shapiro ابداع شد نام کامل این واژه به معنای کدینگ تدریجی با استفاده از درخت ضرایب ویولت است. این الگوریتم ضرایب ویولت را به عنوان مجموعه ای از درختهای جهت یابی مکانی در نظر می گیرد هر درخت شامل ضرایبی از تمام زیرباندهای فرکانسی و مکانی است که به یک ناحیه مشخص از تصویر اختصاص دارند. الگوریتم ابتدا ضرایب ویولت با دامنه بزرگتر را کددهی می کند در صورتیکه دامنه یک ضریب بزرگتر یا مساوی آستانه مشخص باشد ضریب به عنوان ضریب معنی دار در نظر گرفته می شود و در غیر اینصورت بی معنی می باشد یک درخت نیز در صورتی معنی دار است که بزرگترین ضریب آن از نظر دامنه بزرگتر یا مساوی با آستانه مورد نظر باشد و در غیراینصورت درخت بی معنی است.
مقدار آستانه در هر مرحله از الگوریتم نصف می شود و بدین ترتیب ضرایب بزرگتر زودتر فرستاده می شوند در هر مرحله، ابتدا معنی دار بودن ضرایب مربوط به زیر باند فرکانسی پایین تر ارزیابی می شود اگر مجموعه بی معنی باشد یک علامت درخت صفر استفاده می شود تا نشان دهد که تمامی ضرایب مجموعه صفر می باشند در غیراینصورت مجموعه به چهارزیرمجموعه برای ارزیابی بیشتر شکسته می شود و پس از اینکه تمامی مجموعه ها و ضرایب مورد ارزیابی قرار گرفته اند این مرحله به پایان می رسد کدینگ EZW براساس این فرضیه استوار است که چگالی طیف توان در اکثر تصاویر طبیعی به سرعت کاهش می یابد بدین معنی که اگر یک ضریب در زیر باند فرکانسی پایین تر کوچک باشد به احتمال زیاد ضرایب مربوط به فرزندان آن در زیر باندهای بالاتر نیز کوچک هستند به بیان دیگر اگر یک ضریب والد بی معنی باشد به احتمال زیاد فرزندان آن نیز بی معنی هستند اگر آستانه ها توانهایی از دو باشند میتوان کدینگ EZW را به عنوان یک کدینگ bit-plane در نظر گرفت در این روش در یک زمان، یک رشته بیت که از MSB شروع می شود کددهی می شود با کدینگ تدریجی رشته بیت ها و ارزیابی درختها از زیرباندهای فرکانسی کمتر به زیرباندهای فرکانسی بیشتر در هر رشته بیت میتوان به کدینگ جاسازی دست یافت.
الگوریتم EZW بر پایه 4 اصل استوار است [3]
1- جدا کردن سلسله مراتبی زیرباندها با استفاده از تبدیل ویولت گسسته
1-1-2) تبدیل ویولت گسسته
تبدیل ویولت سلسله مراتبی که در EZW و SPIHT مورد استفاده قرار می گیرد نظیر یک سیستم تجزیه زیرباند سلسله مراتبی است که در آن فاصله زیرباندها در مبنای فرکانس بصورت لگاریتمی است.
در شکل 2-2 یک مثال از تجزیه دو سطحی ویولت روی یک تصویر دو بعدی نشان داده شده است. تصویر ابتدا با بکارگیری فیلترهای افقی و عمودی به چهار زیرباند تجزیه میشود. در تصویر (c ) 2-2 هر ضریب مربوط به ناحیه تقریبی 2×2 پیکسل در تصویر ورودی است. پس از اولین مرحله تجزیه سه زیر باند LH1 , HL1 و HH1 بعنوان زیرباندهای فرکانس بالایی در نظر گرفته می شوند که به ترتیب دارای سه موقعیت عمودی، افقی و قطری می باشند اگر Wv , Wh به ترتیب فرکانسهای افقی و عمودی باشند، پهنای باند فرکانسی برای هر زیر باند در اولین سطح تجزیه ویولت در جدول
1-2 آمده است[4]
جدول 2-1 ) پهنای باند فرکانسی مربوط به هر زیر باند پس از اولین مرحله تجزیه ویولت با استفاده از فیلترهای مشابه (پایین گذر و بالاگذر) زیر باند LL1 پس از اولین مرحله تجزیه ویولت، مجدداً تجزیه شده و ضرایب ویولت جدیدی به دست می آید جدول 2-2) پهنای باند مربوط به این ضرایب را نشان می دهد.
2-1-2) تبدیل ویولت بعنوان یک تبدیل خطی
میتوان تبدیل بالا را یک تبدیل خطی در نظر گرفت [5]. P یک بردار ستونی که درایه هایش نشان دهنده یک اسکن از پیکسلهای تصویر هستند. C یک بردار ستونی شامل ضرایب ویولت به دست آمده است از بکارگیری تبدیل ویولت گسسته روی بردار p است. اگر تبدیل ویولت بعنوان ماتریس W در نظر گرفته شوند که سطرهایش توابع پایه تبدیل هستند میتوان تبدیل خطی زیر را در نظر گرفت.
فرمول
بردار p را میتوان با تبدیل ویولت معکوس به دست آورد.
فرمول
اگر تبدیل W متعامد باشد. است و بنابراین
فرمول
در واقع تبدیل ویولت W نه تنها متعامد بلکه دو متعامدی می باشد.
3-1-2) یک مثال از تبدیل ویولت سلسله مراتبی
یک مثال از تبدیل ویولت سلسله مراتبی در این بخش شرح داده شده است. تصویر اولیه 16*16 و مقادیر پیکسلهای مربوط به آن به ترتیب در شکل 3-2 و جدول 3-2 آمده است.
یک ویولت چهارلایه روی تصویر اولیه اعمال شده است. فیتلر مورد استفاده فیلتر دو متعامدی Daubechies 9/7 است [6]. جدول 4-2 ضرایب تبدیل گرد شده به اعداد صحیح را نشان می دهد. قابل توجه است که ضرایب با دامنه بیشتر در زیرباندهای با فرکانس کمتر قرار گرفته اند و بسیاری از ضرایب دامنه های کوچکی دارند ویژگی فشرده سازی انرژی در تبدیل ویولت در این مثال به خوبی دیده می شود جدول 5-2 تصویر تبدیل یافته و کمی شده را نشان می دهد چنانکه کمی سازی تنها برای اولین سطح ویولت انجام گرفته است یک ضریب مقیاس 25/0 در هر ضریب فیلتر ویولت ضرب شده و سپس مجموعه فیلتر پاین گذر و بالاگذر روی تصویر اولیه بکار گرفته می شود اندازه گام کمی سازی مربوطه در این حالت 16 است.
پس از کمی سازی بیشتر ضرایب در بالاترین زیر باند فرکانسی صفر می شوند تصویربازسازی شده و تبدیل ویولت معکوس در شکل (b) 7-2 و جدول 6-2 آمده است. به علت کمی سازی بازسازی با اتلاف است.
1- ضرایب با دامنه بزرگتر زدوتر ارسال می شوند.
2- بیتهای پرارزش تر ضریب حاوی اطلاعات کمتری هستند و زودتر ارسال میشوند.
میتوان نشان داد که چگونه اینکدر SPIHT از این اصلها برای انتقال تدریجی ضرایب ویولت به دیکدر استفاده می کند فرض می شود تبدیل ویولت به تصویر اعمال شده و ضرایب Ci,j در حافظه ذخیره شده اند. این ضرایب بدون در نظر گرفتن علامتشان مرتب شده و اطلاعات مرتب شده در آرایه m قرار گرفته اند و عضو m(k) از این آرایه شامل مختصات (i,j) مربوط به آرایه Ci,j است و بنابراین برای همه مقادیر k داریم
فرمول
جدول 58-5 مقادیر فرضی 16 ضریب را نشان می دهد که هر کدام بعنوان یک عدد 16 بیتی نشان داده شده است. پرارزشترین بیت،بیت علامت است و 15 بیت باقیمانده مربوط به مقدار عدد هستند. اولین ضریب است که برابر با S1aci…r است. ضریب دوم نیز برابر با است و به همین ترتیب
اطلاعات مرتب شده ای که اینکدر باید بفرستد دنباله m(k) است که به ترتیب زیر است:
علاوه بر آن باید 16 علامت و 16 ضریب را به ترتیب ارزش بفرستد. یک انتقال مستقیم شامل ارسال 16 عدد است. این روش یک روش wastfull است. در الگوریتم SPIHT ، اینکدر وارد یک حلقه می شود که در هر تکرار حلقه دو گام انجام می شود: گام مرتب سازی و گام اصلاح.
در اولین تکرار اینکدر عدد 2= L یعنی تعدد ضرایبی را که در فاصله
فرمول
قرار دارند می فرستد در ادامه دو جفت مختصات ( 3و 2 ) و (4 و 3) و علامت دو ضریب اول فرستاده می شود. این عملیات در نخستین مرحله مرتب سازی انجام می شود. این اطلاعات دیکدر را قادر به تخمین زدن ضرایب به ترتیبی که در ادامه آمده است می کند:
ضرایب و بعنوان یک عدد 16 بیتی بصورت و 14 ضریب باقیمانده صفر بازسازی می شوند. این نشان می دهد که چگونه پرارزش ترین بیتهای مربوط به بزرگترین ضرایب ابتدا به دیکدر فرستاده می شوند. گام بعدی مرحله اصلاح می باشد که در تکرار اول انجام نمی شود.
در تکرار دوم (حلقه دوم) اینکدر هر دو گام را انجام می دهد. در مرحله مرتب سازی عدد 4= L بعنوان تعداد ضرایبی که در فاصله
فرمول
قرار دارند در ادامة آن چهار مختصات ( 2و 3) ، (4 و 4) ، (2 و 1) و (1 و3) و علامت چهار ضریب فرستاده می شود. در گام اصلاح دو بیت b , a بعنوان چهاردهمین بیت با ارزش ضرایب مربوطه به حلقه قبلی فرستاده می شود.
اطلاعات به دست آمده دیکدر را قادر به اصلاح ضرایب تقریبی که از مرحله قبل بدست آمده اند می کند و شش ضریب اول به شکل زیر در می آید:
فرمول
و ده ضریب باقیمانده تغییری نمی کند.
2-2-2) دسته بندی ضرایب در الگوریتم SPIHT
به منظور کاهش تعداد تصمیم گیری ها در مقایسه میان بیتها و نیز کاهش حجم داده های خروجی در الگوریتم SPIHT از ساختار سلسله مراتبی استفاده می شود. در اینجا هدف اصلی دسته بندی ضرایب در مجموعه ها به گونه ای است که تعداد عضوهای یک مجموعه بی معنی حداکثر باشد و هر مجموعه معنی دار تنها یک عضو را شامل شود.
دسته بندی | عمران |
فرمت فایل | |
حجم فایل | 576 کیلو بایت |
تعداد صفحات فایل | 9 |
پیدا کردن مکان بهینه بادبند ها در سازه های فلزی با استفاده از الگوریتم ژنتیک در یک فایل پی دی اف 9 صفحه ای
دسته بندی | آمار |
فرمت فایل | doc |
حجم فایل | 79 کیلو بایت |
تعداد صفحات فایل | 16 |
پروژه آماری الگوریتمهای کنترل همروندی در 16 صفحه ورد قابل ویرایش
چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking) ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write میباشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب میشوند.
در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر میگیریم تا مساله تا حد ممکن ساده سازی شود.
1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود میآید. کنترل همروندی به کاربران اجازه میدهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور میکند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام میدهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:
کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.
یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.
مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاهدادههای متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار میگیرد بصورت مداوم راهکارهای بهبود مختلف عرضه میشود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده میباشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت میباشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان میشوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه میشود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.
با بررسی الگوریتمهای مختلف میتوان به این حقیقت رسید که این الگوریتمها همگی ترکیبی از زیر الگوریتمهای محدودی هستند. در حقیقت این زیر الگوریتمها نسخههای متفاوتی از دو تکنیک اصلی در کنترل همروندی توزیعی به نامهای قفل دو مرحله ای و ترتیب برچسب زمانی میباشند.
همانطور که گفته شد، هدف کنترل همروندی مقابله با تزاحمهایی است که در اثر استفاده چند کاربر از یک سری داده واحد برای کاربران بوجود میآید است. حال ما با ارائه دو مثال در خصوص این مسائل بحث خواهیم نمود. این دو مثال از محک معروف TPC_A مقتبس شده اند. در این مثالها، یک سیستم اطلاعات را از پایگاه داده ها استخراج کرده و محاسبات لازم را انجام داده و در نهایت اطلاعات را در پایگاه داده ذخیره مینماید.
حالت اول را میتوان بروزآوری از دست رفته نامید. حالتی را تصور کنید که دو مشتری از دو سیستم مجزا بخواهند از یک حساب مالی برداشت نمایند. در این حالت فرض کنید در غیاب سیستم کنترل همروندی، هر دو با هم اقدام به خواندن اطلاعات و درج اطلاعات جدید در سیستم میکنند. در این حالت در غیاب سیستم کنترل همروندی تنها آخرین درج در سیستم ثبت میشود. این حالت در شکل 1 نشان داده شده است.
6-قفل دو مرحلهای با نسخه اولیه : قفل دو مرحلهای با نسخه اولیه یک تکنیک از نوع قفله دو مرحلهای است که که به افزونگی داده توجه خاصی دارد. یک کپی از هر داده منطقی به عنوان یک کپی یا نسخه اولیه از داده مزبور مطرح میشود. قبل از دسترسی به هر گونه کپی از داده های منطقی، قفل صحیح باید از کپی اولیه اخذ شود.
برای قفلهای خواندنی این روش تعامل و ارتباطات بیشتری را نیاز دارد.فرض کنید که T یک تراکنش باشد که بخواهد داده x را بخواند. در اینصورت اگر X1 کپی اولیه از x باشد و xi برای خواندن توسط تراکنش در دسترس باشد، تراکنش بایستی با x1 که کپی اولیه داده است تعامل داشته و قفل خود را بدست آورد و پس از آن نیز با تعامل با xi داده مورد نظر خود را از Xi بخواند. برای قفلهای نوشتنی بر عکس پیاده سازی پایه قفل دو مرحله ای تراکنش احتیاجی به تعامل بیشتر با سایر dm ها ندارد. در پیاده سازی پایه قفل دو مرحله ای، اگر یک تراکنش میخواست داده x را بروز کند، لازم بود تا بر تمامی نسخه های x قفل نوشتنی بزند و سپس عمل نوشتن را بر روی تمامی نسخه های x انجام دهد اما در اینجا فقط لازم است که تراکنش قفل نوشتن را بر روی کپی اولیه قرار دهد و در صورت بدست آوردن قفل، باید عملیات نوشتن را مانند روش قبل بر روی تمامی نسخه های x انجام دهد.
6-قفل دو مرحلهای با رای گیری : قفل دو مرحله ای با رای گیری پیادهسازی دیگری از روشهای قفل دو مرحله ای است که در آن افزونگی داده بیشتر مد نظر قرار گرفته است. این روش شکل تغییر یافته الگوریتم توافق اکثریت توماس است و تنها برای همزمان سازیهای ww مناسب است.
برای فهم بهتر این روش بهتر است آنرا در داخل روش two phase commit توصیف کنیم. فرض کنید یک تراکنش بخواهد بر روی داده x مقدار جدیدی را بنویسد، در اینصورت درخواست قفل به تمامی نسخه های داده x ارسال شود. در صورتیکه قفل قابل تخصیص باشد، DM دریافت کننده قفل بایستی یک پیام تخصیص قفل صادر نماید. در صورتیکه قفل قابل تخصیص نباشد نیز یک پیام بلوکه شدن در خواست قفل ارسال میگردد. در صورتیکه پیامها از dm های مختلف برگشت داده شد، حال tm ارسال کننده درخواست قفل اقدام به تصمیمگیری مینماید. در صورتیکه تعداد قفلهای اخذ شده دارای اکثریت باشند، آنگاه tm دقیقا مانند حالتی عمل میکند که قفلهای لازم را بر روی نسخه داده ای مزبور بدست آورده است. در این حالت tm باقی عملیات یعنی نوشتن بر روی داده مزبور را انجام میدهد. در صورتیکه قفلهای لازم بر روی داده مورد نظر به تعداد اکثریت نباشد، Tm منتظر دریافت پاسخ تخصیص قفل از dm هایی که پاسخ بلوکه شدن قفل را ارسال نمودند، میشود. در این حالت با دریافت پاسخ جدید از dm هایی که قبلا درخواست را بلوکه کردند، tm تعداد قفلهای لازم را بررسی میکند. در صورت اخذ اکثریت آرا، اجرای خود را ادامه میدهد. از آنجائیکه فقط یک تراکنش میتواند در هر لحظه اکثریت قفلهای نوشتن را بدست آورد در نتیجه فقط در هر لحظه فقط بک تراکنش میتواند بر روی اطلاعات تغییرات اعمال نماید. در هر لحظه فقط یک تراکنش میتواند در فاز نوشتن خود قرار داشته باشد. در نتیجه تمامی نسخه های x دارای یک ترتیب مشخص و مشترک از مقادیر میباشند. نقطه قفل یک تراگنش جایی است که یک تراکنش توانسته است اکثریت قفلهای لازم را برای نوشتن برای هر آیتم دادهای در مجموعه نوشتاری خود بدست آورد. برای بروز آوری های با حجم بالا ، تراکنش بایستی اکثریت قفلهای نوشتن را بر روی تمامی آیتمهای داده ای نوشتنی خود قبل از ارسال دستورات نوشتن بدست آورد.
در حقیقت، قفل دو مرحله ای با رای گیری میتواند برای همزمان سازی عملیات های rw سازگار شود. برای اینکار برای خواندن یک نسخه دادهای بایستی قفل خواندن از تمامی نسخه های داده ای درخواست شود. در صورتیکه اکثریت قفل خواندن از dm ها بدست آید میتواند اطلاعات مورد نظر را بخواند. این روش روش بسیار خوب و قدرتمندی است ولی در این روش برای خواندن یک آیتم داده ای بایستی از تمامی سایتهایی که دارای یک نسخه از آیتم دادهای مذکور هستند قفل خواندن اخذ شود که عملا سیستم را بسیار کند میکند.
7- قفل دو مرحلهای متمرکز : بجاری توزیع نمودن زمانبندها بر روی سایتهای مختلف، همه زمانبندها را بر روی یک سایت متمرکز خواهیم نمود. در این خالت اگر یک تراکنش بخواهد به یک داده x دسترسی پیدا کند باید از سایت مذکور درخواست قفل مناسب بر روی داده مذکور نماید. در این وضعیت داده ممکن است بر روی یک سایت غیر از سایت زمانبند مرکزی قرار داشته باشد.
فرض کنید تراکنشt بخواهد داده x را بخواند در اینصورت بایستی t یک قفل خواندن را از سایت مرکزی درخواست نماید. در این حالت اگر قفل تخصیص داده شود تراکنش میتواند اطلاعات را از یکی از سایتهایی که دارای xهستند درخواست نماید. در غیر اینصورت باید منتظر دریافت مجوز تخصیص ثقفل خواندن از سوی سایت زمانبند مرکزی باشد. در حالتی که داده x بر روی سایت مرکزی زمانبند نیز باشد، درخواست قفل و داده بطور مشترک به سایت مرکزی ارسال میشود، در صورتیکه قفل قابل تخصیص باشد، عملیات خواندن به همراه تخصیص قفل انجام میشود. برای عملیات بروز آوری و نوشتن نیز فرآیند تخصیص قفل به همین نحو است با این تفاوت که بعد از تخصیص قفل و اعلام به درخواست کننده از سوی سایت مرکزی زمانبندی، سایت درخواست کننده موظف است تمامی کپی های نسخه های اطلاعاتی را بروز نماید. این روش نیز مانند قفل دو مرحلهای کپی اولیه مستلزم نقل و انتقال مضاعف پیام میباشد.
دسته بندی | پزشکی |
فرمت فایل | doc |
حجم فایل | 29 کیلو بایت |
تعداد صفحات فایل | 59 |
*مقاله در مورد دست مصنوعی*
انسان از دیر باز در جستجوی رفع معلولیت خویش بوده است و برای معلولیت عضوهایی مانند دست و پا،قطعات چوب و فلز را برای جایگزینی این اعضا استفاده نموده است.اما بطور مشخص پیشرفت تکنیک طراحی پروتز دست به روش الکتریکی بعد از جنگ جهانی دوم آغاز گردیده است.
فعالیت ساخت اندامهای مصنوعی (Artifitial organs) بیشتر مقارن با جنگهای بزرگ یا بعد آن بوده است که تعداد زیادی از جوانان قوی و نیرومند در صحنه های نبرد و یا مردم معمولی درزمان بمباران شهرها و یا در حین عمل جراحی دچار قطعی عضو می شوند و نیاز مبرم به اندام مصنوعی پیدا می کنند.
برای یک نوع اولیه، که به پای چوبی (peg-leg) یا دست چنگکی (Hook Hand) معروف بود، تاریخ 1866 ذکر گردیده است. بعد از جنگ جهانی دوم و با توجه به تعداد زیاد معلولین نوع دیگری از اندام مصنوعی بنام پروتز متصل به کابل cable connected prostheses طراحی وساخته شد کابل موجود در این پروتز به منظور محکم کردن انتهای اندام به سوکت (socket) و همچنین لنگر انداختن کابلهای عمل کننده بکار میرفت.
در معلولین زیربازو (Below-ElbowAmputtes) چرخش شانه سبب کوتاه شدن کابل وباز شدن انتهای وسیله ی چنگکی شکل می شود و در معلولین بالای بازو (Above-1bow Amputees) براساس اینکه مفصل آرنج به وسیله کابل دیگری با حرکت بالارفتن شانه قفل شده است باشد با حرکت چرخشی شانه می توان دو حرکت باز شدن وسیله یا جمع کردن آرنج را انجام داد.
در 1948 R.Ritter یک پروتز مایوالکتریک دست را بنمایش گذاشت تا کارگرانی که در کارخانه دچار نقض عضو شده اند از آن استفاده کنند ولی استقبالی از این پروتز صورت نگرفت و باید توجه داشت که مطلوب بودن پروتزهای سنتی دست، در مجموع کم است.
ویتالی (VITALLY) و دستیارانش طی بررسی گزارشی داند که هفتاد درصد معلولین دست، این پروتزها را نپذیرفته اند این نتیجه شگفت انگیز را می توان چنین توجیه کرد که فقدان یک دست زندگی انسان را مختل نمی کند ومانع کارایی آن نمی شود البته معلولیت بنحوی سبب محدود شدن به زحمت افتادن وفشار روانی می گردد، اما اگر پروتز فایده قابل توجهی برای معلول نداشته باشد او ترجیح میدهد که بدون استفاده از ان به زندگی خود ادامه دهد، بخصوص اینکه ا ستفاده از آن برای او مشکل ظاهری و نحوه بکارگیری آن باعث جلب توجه دیگران شود.البته در جهت رسیدن به فایده های بیشتر در دست مصنوعی، پس از توسعه تکنولوژی الکترونیک مسئله استفاده از سیگنالهای مایوالکتریک در کنترل دست مصنوعی مطرح گردید.
تحقیقات اولیه توسط Reltter و در ادامه آن korbinsky در شوروی منجر به ارائه اولین سیستم کنترل مایوالکتریکی با کاربرد کلینیکی گردید واز آن پس تاکنون در کشورهای مختلف جهان از قبیل کانادا- سوئد- یوگسلاوی-ایتالیا-آمریکا –انگلستان به طراحی و اصلاح سیستم کنترل مایوالکتریک در پروتزهای دست پرداختها ند ودر این طراحی ها سیگنال ورودی الکترومایوگرام نقش کنترل کننده ON/OFF را برای راه اندازی موتور محرکه پروتز دارد.
در این روش ساده از الگوریتم های شناخته الگو وروش های پیچیده پردازش سیگنال استفاده نمی گردد بلکه از هر محل الکترود برای کنترل تنها یک حرکت استفاده می شود.
هم اکنون این روشها بطور موفقیت آمیزی برای طراحی وساخت پروتزهای دست مورد استفاده واقع شده اند. بخصوص در مواردیکه یک یا دو حرکت مورد نظر باشد، این پروتزها توسط معلولین بکار گرفته شده اند.
یک پروتز دست مصنوعی برای اینکه بتواند بخوبی و بطور کلینیکی توسط معلولین پذیرفته شود باید دارای خصوصیاتی باشد که در بسیاری از موارد از نظر تکنولوژی وطراحی با یکدیگر متناقض می باشد برای مثال دست مصنوعی از یک طرف می بایست دارای قیمت و وزن مناسب باشد و حالات زیبایی در آن رعایت گردد و و از یکطرف باید بسادگی قابل کنترل باشد وفرد معلول بایستی بتواند با حداقل خطای ممکن حرکت پیش بینی شده را بدون نیاز به تمرکز فکری زیاد که موجب خستگی وی شود، انجام دهد که معنی پیچیده شدن بیشتر سیستم، گرانی و پرمصرف بودن آن وسنگینی پروتز می باشد.
یک پروتز دست باید حتی المقدور حرکات عملکرد آن شبیه دست سالم بوده و نسبت به دستورالعمل های ارسالی از سوی فرد معلول بلادرنگ عمل نماید وبطور کلی یک پروتز دست نه فقط بر مبنای شاخص های مکانیکی بلکه براساس اینکه در مجموع سیستم انسان- ماشین قابل قبول واقع گردد، مورد ارزیابی وقضاوت قرار میگرد.
پیچیدگی عملکرد پروتز دست مصنوعی در قدم اول مستقیما متناسب با مقدارو سطح معلولیت دست می باشد زیرا که با افزایش سطح معلولیت پروتیز می بایست قادر به انجام توابع حرکتی پیچیده تری باشد.
از اولین دستهای ساخته شده تا دستهای نوین امروزی، دو حرکت عمده به چشم می خورد:
اولین حرکت منجر به ساخت دستهای تکامل یافته تر نظر Epp ,EMG گردید وحرکت دوم با توجه به تکنولوژی روز به بهبود کنترل پرداخته است.
با وجود پیشرفت های بسیار در زمینه کنترل دستهای تولید شده امروزی فاقد کنترل کننده های نوین می باشد زیرا:
1-بکارگیری یک زمینه تئوری در کار عملی به ویژه کاربردهای خاص نیاز به افرادی دارد که در هر دو زمینه آشنایی کافی داشته باشند( نظیر کنترل ومهندسی- پزشکی)
2-دست مدد جو به صورت سیرنتیکی عمل می کند و نظیر ربات حرکات آن از قبل تعریف شده نمی باشد. از این رو در کار کنترل علاوه بر محدویت زمانی (به جهت عملکرد بی ورمک) باید قابلیت یادگیری در سیستم وجود داشته باشد تا در طول زمان بکارگیری دست ساده تر باشد
دسته بندی | مهندسی شیمی |
فرمت فایل | doc |
حجم فایل | 24 کیلو بایت |
تعداد صفحات فایل | 27 |
بکارگیری محاسبه مولکولی با استاندارد رمزگذاری دادهها
لئونارد ام. المان، یاول دبلیو، کی، روتمود، سام روئیس، اریک وینفری
آزمایشگاه برای علم مولکولی
دانشگاه کالیفرنیای جنوبی و
بخش علم کامپیوتری
دانشگاه کالیفرنیای جنوبی
محاسبه و انتخاب سیستمهای عصبی
موسسه تکنولوژی کالیفرنیا
اخیراً، بونه، دال ووس ولیپتون، استفاده اصلی از محاسبه مولکولی را در جمله به استاندارد رمزگذاری (دادهها) در اتحاد متحده توضیح دادند (DES). در اینجا، ما یک توضیح از چنین حملهای را با استفاده از مدل استیگر برای محاسبه مولکولی ایجاد نموده ایم. تجربه ما پیشنهاد میکند که چنین حملهای ممکن است با دستگاه table-top ایجاد شود که بصورت تقریبی از یک گرم PNA استفاده میکند و ممکن است که حتی در حضور تعداد زیادی از اشتباهها موفق شود:
مقدمه :
با کار آنها در زمینه DES بته، رانودرس ولیبتون [Bor]، اولین نمونه از یک مشکل علمی را ایجاد نمودند که ممکن بود برای محاسبه مولکولی آسیبپذیر باشد. DES یکی از سیستمهای[1] Cryptographic می باشد که به صورت گسترده مورد استفاده قرار میگیرد آن یک متن رمزی 64 بیتی را از یک متن ساده 46 بیتی و تحت کنترل یک کلید 56 بیتی ایجاد مینماید.
در حالیکه این بحث وجود دارد که هدف خاص سختافزار الکترونیکی [Wi] یا سویر کامیپوترهای همسان بصورت گسترده، این امری میباشد که DES را به یک میزان زمانی منطقی بشکند، اما به نظر میرسد که دستگاههای متوالی قدرتمند امروزی قادر به انجام چنین کاری نیستند. ما کار را با بوته ان ال دنبال کردیم که مشکل شکست DES را موردتوجه قرار داده بود و اخیراً مدل قویتری را برای محاسبه مولکولی پیشنهاد داده بود [Ro]. در حالیکه نتایج ما امید بخش بود، اما باید بر این امر تأکیدی نمودیم که آسانی این امر نیز باید سرانجام در آزمایشگاه تصمیم گرفته شود.
در این مقاله، به اصطلاح ما محله متن ساده- متن رمزدار[2] مورد توجه قرار میگیرد و امید این است که کلیدی که برای عملکرد encryption (رمزدار کردن) مورد استفاده قرار میگیرد، مشخص شود. سادهترین نظریه برای این امر، تلاش بر روی تمام کلیدهای 256 میباشد که رمزسازی را برای یک متن ساده تحت هر یک از این کلیدها انجام دهیم تا متن رمزدار را پیدا نمائیم. به طور مشخص، حملات کار امر مشخص نمی باشد و در نتیجه یک نیروی کامل برای انجام آن در اینجا لازم است.
ما، کار خود را با توضیح الگوریتم آغاز کردیم تا حمله متن رمزدار- متن ساده را به منظور شکستن DES در یک سطح منطقی بکار بریم. این به ما اجازه میدهد تا عملکردهای اصلی را که برای اجرا در یک دستگاه استیکر (Sticker) نیاز داریم و بعنوان یک نقشه مسیر برای آنچه که باید دنبال کنیم عمل میکنند تشخیص دهیم.
(2) الگوریتم مولکولی : بصورت تقریبی، بار رشتههای حافظهای DNA همان یکسان 256 [Ro] شروع کنید که هر یک دارای طول نئوکلیتد 11580 میباشد. ما فکر میکنیم که هر رشته حافظه دارای 5792 قطر پشت سر هم باشد (به مناطق [Ro] برگردید) B0,B1,B2,…B578 هر یک طول به میزان 20 نئوکلتید دارد. در یک مدل استیکر که اینجا وجود ادر 579 استیکر وجود ارد S0, S1, …S578 که هر یک برای تکمیل هر قطعه میباشد (ما به رشتههای حافظه با استیکرهای S بعنوان پیچیدگیهای حافظهای میباشد برمیگردیم) زیرا، ما به این امر توجه میکنیم که هر رشته نماینده یک حافظه 579 بیتی باشد، در بعضی از مواقع از Bi استفاده میکنیم که به بیتی که نماینده Bi میباشد، برمیگردد. قطعه B0 هرگز تنظیم میشود و بعداً در اجرای الگوریتم استفاده میشود (بخش فرعی 1-3) قطعههای B1 تا B56 رشتههای حافظهای می باشد که برای ذخیره یک کلید مورد استفاده قرار میگیرد، 64 قطعه بعدی، B57….B120 سرانجام بر اساس متن رمزگذاری کدگذاری میشود و بقیه قطعهها برای نتایج واسطه ودر مدت محاسبه مورد استفاده قرار میگیرد. دستگاه استیکر که رشتههای حافظه را پردازش میکند، متون رمزدار را محاسبه میکند که تحت کنترل یک ریز پردازنده انجام می گیرد. به این علت که در تمام نمونهها، متن ساده یکسان است؛ ریز پردازنده کوچک ممکن است که آن را ذخیره سازد، ما نیاز نداریم که متن ساده را در رشتههای حافظه نشان دهیم. هماکنون یک جفت متن رمزدار- متن ساده را در نظر بگیرید، الگوریتم اجرا شده در سه مرحله می باشد.
(1) مرحله ورودی: رشتههای حافظه را به اجرا درآورید تا پیچیدگیهای حافظه ای را ایجاد نماید که نماینده تمام 256 کلید میباشد .
(2) مرحله رمزی کردن : در هر پیچیدگی حافظه، متن رمزدار محاسبه کنید که با رمز کردن متن ساده و تحت کلید پیچیدگی همسان است.
(3) مرحله بازدهی: پیچیدگی حافظه ای که متن رمزدار آن با متن رمزدار مورد نظر تطبیق دارد، انتخاب نمایند و کلید تطبیقی با آن را بخوانید.
[1] - Plain text- ciportext a Hack
[2] - سیستمهایی که از علائم و اشکال رمز استفاده می کند.
دسته بندی | کامپیوتر و IT |
فرمت فایل | doc |
حجم فایل | 237 کیلو بایت |
تعداد صفحات فایل | 37 |
این مقاله الگوریتمی جدید برای مسئله برنامه ریزی مسیرکلی به یک هدف ، برای ربات متحرک را با استفاده از الگوریتم ژنتیک ارائه می دهد .الگوریتم ژنتیک برای یافتن مسیر بهینه برای ربات متحرک جهت حرکت در محیط استاتیک که توسط نقشه ای با گره ها و لینک ها بیان شده است ،بکار گرفته شده است.موقعیت هدف و موانع برای یافتن یک مسیر بهینه در محیط دو بعدی داده شده است .هر نقطه اتصال در شبکه ژنی است که با استفاده از کد باینری ارائه شده است.تعداد ژن ها در یک کروموزوم تابعی از تعداد موانع در نقشه (نمودار)می باشد.
بنابراین از یک کروموزوم با طول ثابت استفاده کردیم.مسیر ربات ایجاد شده ، در مفهوم کوتاهترین مسیر ،بهینه است .ربات دارای محل آغاز و محل هدف تحت فرضیه ای است که ربات از هر محل فقط یکبار می گذرد یا اصلا نمی گذرد.نتایج بدست آمده در شبیه سازی ؛قدرت الگوریتم پیشنهادی را تایید می نماید.
فهرست مطالب
چکیده
مقدمه
1.مسیریابی
2.الگوریتم ژنتیک
3.فرمول سازی مسئله
4.الگوریتم طراحی مسیر پیشنهادی
کروموزوم ها و جمعیت اولیه
ارزیابی
عملگرها
5.نتایج شبیه سازی
6.منابع
شبه کد Matlab
دسته بندی | فیزیک |
فرمت فایل | doc |
حجم فایل | 24 کیلو بایت |
تعداد صفحات فایل | 27 |
*بکارگیری محاسبه مولکولی با استاندارد رمزگذاری دادهها*
لئونارد ام. المان، یاول دبلیو، کی، روتمود، سام روئیس، اریک وینفری
آزمایشگاه برای علم مولکولی
دانشگاه کالیفرنیای جنوبی و
بخش علم کامپیوتری
دانشگاه کالیفرنیای جنوبی
محاسبه و انتخاب سیستمهای عصبی
موسسه تکنولوژی کالیفرنیا
اخیراً، بونه، دال ووس ولیپتون، استفاده اصلی از محاسبه مولکولی را در جمله به استاندارد رمزگذاری (دادهها) در اتحاد متحده توضیح دادند (DES). در اینجا، ما یک توضیح از چنین حملهای را با استفاده از مدل استیگر برای محاسبه مولکولی ایجاد نموده ایم. تجربه ما پیشنهاد میکند که چنین حملهای ممکن است با دستگاه table-top ایجاد شود که بصورت تقریبی از یک گرم PNA استفاده میکند و ممکن است که حتی در حضور تعداد زیادی از اشتباهها موفق شود:
مقدمه :
با کار آنها در زمینه DES بته، رانودرس ولیبتون [Bor]، اولین نمونه از یک مشکل علمی را ایجاد نمودند که ممکن بود برای محاسبه مولکولی آسیبپذیر باشد. DES یکی از سیستمهای[1] Cryptographic می باشد که به صورت گسترده مورد استفاده قرار میگیرد آن یک متن رمزی 64 بیتی را از یک متن ساده 46 بیتی و تحت کنترل یک کلید 56 بیتی ایجاد مینماید.
در حالیکه این بحث وجود دارد که هدف خاص سختافزار الکترونیکی [Wi] یا سویر کامیپوترهای همسان بصورت گسترده، این امری میباشد که DES را به یک میزان زمانی منطقی بشکند، اما به نظر میرسد که دستگاههای متوالی قدرتمند امروزی قادر به انجام چنین کاری نیستند. ما کار را با بوته ان ال دنبال کردیم که مشکل شکست DES را موردتوجه قرار داده بود و اخیراً مدل قویتری را برای محاسبه مولکولی پیشنهاد داده بود [Ro]. در حالیکه نتایج ما امید بخش بود، اما باید بر این امر تأکیدی نمودیم که آسانی این امر نیز باید سرانجام در آزمایشگاه تصمیم گرفته شود.
در این مقاله، به اصطلاح ما محله متن ساده- متن رمزدار[2] مورد توجه قرار میگیرد و امید این است که کلیدی که برای عملکرد encryption (رمزدار کردن) مورد استفاده قرار میگیرد، مشخص شود. سادهترین نظریه برای این امر، تلاش بر روی تمام کلیدهای 256 میباشد که رمزسازی را برای یک متن ساده تحت هر یک از این کلیدها انجام دهیم تا متن رمزدار را پیدا نمائیم. به طور مشخص، حملات کار امر مشخص نمی باشد و در نتیجه یک نیروی کامل برای انجام آن در اینجا لازم است.
ما، کار خود را با توضیح الگوریتم آغاز کردیم تا حمله متن رمزدار- متن ساده را به منظور شکستن DES در یک سطح منطقی بکار بریم. این به ما اجازه میدهد تا عملکردهای اصلی را که برای اجرا در یک دستگاه استیکر (Sticker) نیاز داریم و بعنوان یک نقشه مسیر برای آنچه که باید دنبال کنیم عمل میکنند تشخیص دهیم.
[1] - Plain text- ciportext a Hack
[2] - سیستمهایی که از علائم و اشکال رمز استفاده می کند.