دسته بندی | آمار |
فرمت فایل | zip |
حجم فایل | 643 کیلو بایت |
تعداد صفحات فایل | 13 |
ترجمه مقاله "روشهای MCMC برای مدل های امیخته خطی تعمیم یافته چند-پاسخی: بسته MCMCglmm "
چکیده
مدل آمیخته خطی تعمیم یافته یک چارچوب انعطاف پذیر برای مدل سازی طیف وسیعی از اطلاعات فراهم می کند، هر چند که با متغیرهای پاسخ دهی غیر-گاوسی نمی توان احتمال را در قالب بسته به دست آورد. روش زنجیره مارکوف مونت کارلو[1] با نمونه برداری از یک سری از توزیع های شرطی ساده که می تواند مورد بررسی قرار گیرد، این مشکل را حل میکند. بسته MCMCglmm R ، چنین الگوریتمی را برای طیف وسیعی از مشکلات برازش مدل اجرا میکند. بیش از یک متغیر پاسخ می تواند به طور همزمان مورد تجزیه و تحلیل قرار گیرد ، و این متغیرها مجاز به پیروی از توزیع گاوسی[2]، پواسون[3]، چند (دو) اسمی، نمایی، تورم صفر و سانسور شده[4] است. طیف وسیعی از سازه ها واریانس برای اثرات تصادفی مجاز هستند، از جمله تعامل با متغیرهای قیاسى و یا پیوسته (به عنوان مثال، رگرسیون تصادفی) و ساختار واریانس پیچیده تر که از طریق دودمان مشترک بوجود می آیند، چه از طریق شجره یا چه از طریق تکامل نژادى. مقادیر گمشده در متغیر پاسخ (ها) مجاز است و داده ها تا سطحی از خطای اندازه گیری در متاآنالیز می تواند شناسایی شود. همهی شبیه سازی ها در C/ C++ با استفاده از برنامه CSparse برای سیستم های خطی پراکنده انجام میشود. اگر شما نرم افزار استفاده میکنید لطفا به این مقاله که در مجله Statistic Software منتشر شده (Hadfield 2010) استناد کنید.
کلمات کلیدی: MCMC ، مدل آمیخته خطی ، شجره ، تکامل نژادى ، مدل حیوانی، چند متغیره، پراکنده، R.
با توجه به انعطاف پذیری مدل های آمیخته خطی، در حال حاضر آنها به طور گسترده ای در علوم مختلف استفاده می شوند (Brown and Prescott 1999; Pinheiro and Bates 2000; Demidenko 2004). با این حال، تعمیم این مدل به داده های غیر گوسی دشوار است زیرا یکپارچه سازی اثرات تصادفی مقاوم مشکل است (McCulloch and Searle 2001). اگرچه تکنیک هایی که این انتگرال ها را تقریب میزنند (Breslow and Clayton 1993) در حال حاضر مرسوم هستند، روش زنجیره مارکوف مونت کارلو (MCMC) یک استراتژی جایگزین برای به حاشیه راندن عوامل تصادفی قوی تر ارائه میکند (Zhao, Staudenmayer, Coull, and Wand 2006; Browne and Draper 2006) پژوهش بر روی توسعه روش MCMC برای تعمیم مدل های آمیخته خطی (GLMM) بسیار فعال است (Zeger and Karim 1991; Damien, Wakefield, and Walker 1999; Sorensen and Gianola 2002; Zhao et al. 2006). و در حال حاضر چندین بسته نرم افزاری برای اجرای این تکنیک موجود است (به عنوان مثال WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003), MLwiN (Rasbash, Steele, Browne, and Prosser 2005), glmmBUGS (Brown 2009), JAGS (Plummer 2003)). با این حال، این روش اغلب نیازمند تجربه و تخصص کاربر بوده و ممکن است محاسبه زمانبر باشد. بسته MCMCglmm برای R (تیم هسته توسعه R[5]، 2009) از روش زنجیره مارکوف مونت کارلو برای دستیابی به چند پاسخ تعمیم مدل های خطی آمیخته استفاده میکند. طیف وسیعی از توزیع ها پشتیبانی می شوند و انواع مختلفی از ساختار واریانس برای اثرات تصادفی و باقی مانده می تواند اجرا شود. هدف ارائه روشی است که به تخصص کم کاربر نیاز داشته در حالی که میزان زمان محاسبات لازم برای توزیع کافی نمونه را کاهش میدهد.
در این مقاله ما ساختار بنیادین GLMM و سپس به طور خلاصه یک استراتژی کلی برای تخمین پارامترها را توضیح میدهیم. چندین نتیجه جدید ارائه شده است، و ما میخواهیم اذعان کنیم که بسیاری از نتایج آماری را می توان در Sorensen and Gianola (2002) پیدا کرد و بسیاری از جزئیات الگوریتم که اجرای خوب مدل را فراهم می کند، را می توان در Davis (2006) یافت. متن اصلی مقاله نرم افزار را با استفاده از یک مثال از آزمایش ژنتیکی کمی معرفی می کند. ما با مقایسه روش ها با WinBUGS (Spiegelhalter et al. 2003) کار را تمام کردیم و نتیجه گرفتیم که MCMCglmm نزدیک به 40 برابر در هر تکرار سریعتر است، و اندازه نمونهای 3 برابر بیشتر در هر تکرار دارد.
[1] Markov chain Monte Carlo
[2] Gaussian
[3] Poisson
[4] censored
[5] R Development Core Team
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 561 کیلو بایت |
تعداد صفحات فایل | 45 |
مینیمم کردن توابع چند متغیره
مقدمه:
یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. زیرا ماکزیمم F در نقطه ای یافت می شود که -F مینیمم خود را اختیار می کند.
در حساب دیفرانسیل تکنیک اساسی برای مینیمم کردن، مشتق گیری از تابعی که میخواهیم آن را مینیمم کنیم و مساوی صفر قرار دادن آن است.
نقاطی که معادله حاصل را ارضا می کنند، نقاط مورد نظر هستند. این تکنیک را می توان برای توابع یک یا چند متغیره نیز استفاده کرد. برای مثال اگر یک مقدار مینیمم را بخواهیم، به نقاطی نگاه می کنیم که هر سه مشتق پاره ای برابر صفر باشند.
این روند را نمی توان در محاسبات عدی به عنوان یک هدف عمومی در نظر گرفت. زیرا نیاز به مشتقی دارد که با حل یک یا چند معادله بر حسب یک یا چند متغیر بدست می آید. این کار به همان سختی حل مسئله بصورت مستقیم است.
مسائل مقید و نامقید مینیمم سازی:
مسائل مینیمم سازی به دو شکل هستند:نامقید و مقید:
در یک مسئله ی مینیمم سازی نامقید یک تابع F از یک فضای n بعدی به خط حقیقی R تعریف شده و یک نقطه ی با این خاصیت که
جستجو می شود.
نقاط در را بصورت z, y, x و... نشان می دهیم. اگر نیاز بود که مولفه های یک نقطه را نشان دهیم می نویسیم:
در یک مسئله ی مینیمم سازی مقید، زیر مجموعه ی K در مشخص می شود . یک نقطة
جستجو می شود که برای آن:
چنین مسائلی بسیار مشکل ترند، زیرا نیاز است که نقاط در K در نظر گرفته شوند. بعضی مواقع مجموعه ی K به طریقی پیچیده تعریف می شود.
سهمی گون بیضوی به معادلهی
را در نظر بگیرید که در شکل 1-14 مشخص شده است. به وضوح مینیمم نامقید در نقطه ی
(1و1) ظاهر می شود، زیرا:
اگر
مینیمم مقید 4 است و در (0،0) اتفاق می افتد.
Matlab دارای قسمتی است برای بهینه سازی که توسط اندرو گریس طراحی شده و شامل دستورات زیادی برای بهینه سازی توابع عمومی خطی و غیر خطی است.
برای مثال ما می توانیم مسئله ی مینیمم سازی مربوط به سهمی گون بیضوی نشان داده شده در شکل 1-14 را حل نماییم.
ابتدا یک M-file به نام q1.m می نویسیم و تابع را تعریف می کنیم: