فایلساز

فروشگاه فایلساز ، فروش فایل ارزان , فروش ارزان فایل, پروژه, پایان نامه, مقاله و ...

فایلساز

فروشگاه فایلساز ، فروش فایل ارزان , فروش ارزان فایل, پروژه, پایان نامه, مقاله و ...

دانلود تحقیق اثر شلاقی در زنجیره تامین

بر اساس تعریفی که Towill و همکان در سال 1992 ارائه می کنند زنجره عرضه سیستمی است که قسمتهای اصلی آن تأمین کننده های مواد خام ، تولید کننده ها ، سرویسهای توزیع ومشتریان و مشتریان هستند که همه آنها از طریق جریان رو به جلوی مواد و کالاها وجریان رو بهعقب اطلاعات ا هم متصل می شوند بر اساس تعریفی دیگر زنجیره عرضه مجموعه ای از فعالیتها می شد
دسته بندی مدیریت
فرمت فایل doc
حجم فایل 39 کیلو بایت
تعداد صفحات فایل 16
دانلود تحقیق اثر شلاقی در زنجیره تامین

فروشنده فایل

کد کاربری 7169

مقدمه

اکثر تعارفی که از زنجیره عرض ارائه میشود به نوعی به ساختار خطی زنجیره عرضه اشاره می کنند . واضح ترین مشخصه این ساختار جریان وارده از سمت اعضا بالادستی به سمت اعضا پایین دستی و جریاناطلاعات در جهت مخالف است . در ان ساختارهر عضوی تنها قراری ارتباط مستقیم بااعضا بلاواسطه قبل و بعد از خود را دارا می باشد . شبیه سازی که فورستر در سال 1961 این ساختار با نام بازی توزیع نوشیدنی ارائه کرد نشان داد که تصمیم گیری شرکای زنجیره عرضه بر مبنای روابط خطی می تواند بستری برای ایجاداثر شلاقی در زنجیرة عرضه باشد. اثر شلاقی افزایش نوسان تقاضا در طول زنجیره عرضه از سمت اعضا پایین بالادستیمی باشد . این پدیده توجه بسیاری از تحقیقات آکامیک را به خود جلبکرده است و به همن دلیل راه حلهای متفاوتی برای مقابله با آنارائه گشته است . همانطور که در ادامه بحث آورده می شود راح حل کلی برای مهار این پدیده پرهیز از تصمیم های محلی توسط اعضاء و حاکم شدن دیدگاه سیستمیبر ساختار زنجیره عرضه می باشد . برای این منظور ، ساختار منظومه‌ای برای تبادل جریان اطلاعات و مواد به عنوان بستری برای هدف فوق مورد توجه قرار گرفته و معرفیمی شود . این ساختاراین قابلیت را خواهد داشت تا با حذف دلایل ایجاد اثر شلاقی در کاهش هر چه بیشتر آن مؤثر باشد .

2- ساختارخطی زنجیره عرضه و اثر شلاقی

بر اساس تعریفی که Towill و همکان در سال 1992 ارائه می کنند زنجره عرضه سیستمی است که قسمتهای اصلی آن تأمین کننده های مواد خام ، تولید کننده ها ، سرویسهای توزیع ومشتریان و مشتریان هستند که همه آنها از طریق جریان رو به جلوی مواد و کالاها وجریان رو بهعقب اطلاعات ا هم متصل می شوند . بر اساس تعریفی دیگر زنجیره عرضه مجموعه ای از فعالیتها می بشد که باعث حرکت و انتقال مواد از مراحل اولیه به سمت مصرف کننده نهییمی شود بطوریکه این فعالیتها همراه با جریان رو به جلوی مواد و جرین رو به عقب اطلاعات می باشند .

بنابراین همان طور که در شکل 1 نشانداده شده است مشخصه واضح زنجیره عرضه در ساختار مرسوم حرکت رو به جلو جریان فیزیکی کالا و حرکت رو به عقب جریان اطلاعات شناخته می شود .

در این ساختار خطی هیچ ارتباط مستقیمی بین بالادستی زنجیره عرضه (تأمین کننده ها و تولید کننده ها ) و مصرف کننده‌های نهایی یا مشتریهای پایین دستی زنجیره عرضه برای تبادل وجود ندارد . چنین ساختاری باعث می شود تا هر عضو از زنجیره عرضه مبنای تصمیم مبنای تصمیم گیریهای خود را بر اساس رفتارهای اعضا بلاواطله خود قرار دهد ، جرا که جز این عضا سایراعضا زنجیره را مشاهده نمی کند .

شبیه سازی توزیع نوشیدنی به خوبی رفتار سیستمی را نشان می دهد . شبیه سازی توزیع نوشیدنی یک شبی سازی مدیریینیاست که برای اولین بار در دانشکده مدیریت دانشگاه MIT در آمریکا توسط فورستر در سال 1958 تا 1961 با هدف ایجاد درک بهتر نسبت با نتایج تصمیماتی که در فعالیتهای به هم وابسته زنجیره تأمین گرفته بوجود آمد .این شبیه سازی به عنوان یک وسیله استثنایی اثر دیدگاه های متفاوت در زنیجره تأمین را روی کاراریی زنجیره زنجیره تأمین نشان میدهد . این شبیه سازی به خوبی بیانگر رفتارسیستمی است که به شکل ساختار مرسوم زنجیره عرضه ایجاد شده است .

در بازی توزیع نوشیدنی اعضا زنجیره عرضه باید سعی کننده تا با مدیریت سطح موجودی در زنجیره توزیع و تولید ، هزینه خود را کمینه کنند . این بازی شامل 4 مرحله می باشد : خرده فروش، عمده فروش ، توزیع کننده و تولید کننده .

هر بخش یک بافر کوچک برای مقابله با نوسانات احتمالی در مصرف نهایی ذخیره می‌کند و از مشتری مستقیم و بدون واسطه خود سفارش می گیرد و بر اساس تصمیم میگیرد که به چه مقدار به تأمین کننده خود سفارش بدهد. این شبیه سازی طوری طراحی شده است کههر بخش ،از اطلاعات محلی خوبی برخوردار است اما در دسترسی به اطلاعات کل زنجیره تأمین راجع به سطح موجودیها و سفارشها به شدت در محدودیت قرارداد . این بدین معنی است که تنها خرده فروش است که از تقاضای واقعی مشتری نهایی اطلاع دارد . در این بازی فرض می شود که دو هفته طول می‌کشد تا اطلاعات سفارشها بین اعضا منتقل شود و دو هفته طول می کشد تا سفارشها از یک بخش به بخش دیگر منتقل می شود ؛ امکان کنسل کردن سفارشها نیز وجودندارد و همچنین سفارشات برگشتیاتفاق نمی افتد . هزینه های کمبود وجودی (که شامل از دست دادن مشتری نیز می شود ) دو برابر بیشتر از هزینه های نگهداری موجودی می باشد . هدف این بازی آن است که مجموع هزینه ها در کل بخشهای درگیر در بازی توزیع نوشیدنی کمینه شود .

بعد از50 بار تکرار این شبیه سازی تایج قابل توجهی بدست آمد . هرچند که تقاضای مشتری نهایی در هفته پنجم فقط دو برابر شده بود اما نوسانات و اعوجاجهایبزرگی در سفارشهایی که در طول زنجیره جریان داشت اتفاق افتاد بود . معمولاٌ بعد از انجام هر بازی تولید کننده به الگوی تقاضایی حدوداٌ با دشت 900% تقویت نسبت به نوسان تقاضای مشتری نهایی می رسید .

در این شبیه سازی


آموزش شبیه سازی و نرم افزار ارنا Arena

آموزش شبیه سازی و نرم افزار ارنا Arena شامل چند فایل پاورپوینت و پی دی اف
دسته بندی صنایع
فرمت فایل zip
حجم فایل 8669 کیلو بایت
تعداد صفحات فایل 143
آموزش شبیه سازی و نرم افزار ارنا Arena

فروشنده فایل

کد کاربری 7218

مقدمه ای در باره ی شبیه سازی

روند تکمیل شبیه سازی

برخی از نرم افزار های شبیه سازی

فاکتور های گزینش یک نرم افزار شبیه سازی

معرفی اجمالی Arena

ویرایش های مختلف Arena

اساس کار نرم افزار

ملحقات نرم افزار

مقایسه ی ارنا با دیگر نرم افزارهای مشابه

قابلیت های آخرین نسخه

Arena RT

آشنایی با مفاهیم و مراحل شبیه‌سازی

مثال هایی از شبیه سازی و مفاهیم مدل سازی سیستم ها

آمار در شبیه سازی (مفاهیم آمار، توزیع ها و ساخت مقادیر تصادفی، اعداد تصادفی، تحلیل داده های ورودی به مدل)

تصدیق و اعتبارسنجی مدل های شبیه‌سازی کامپیوتری

تحلیل داده های خروجی و مقایسه و انتخاب آلترناتیو برتر

بهینه سازی در مدل های شبیه سازی

آموزش صورت کلی نرم‌افزارهای آماری و شبیه سازی (ED, Arena, Showflow, Minitab)


شبیه سازی مقاله Trans-Z-Source Inverters

این مقاله مفهوم اینورترهای Zsource را به اینورترهای transZsource گسترش می دهد اینورترهای Zsource از یک شبکه امپدانسی متشکل از دو سلف و دو خازن مابین ورودی و پل سه فاز استفاده می کنند یک مبدل منبع ولتاژ یا یک مبدل منبع جریان، تنها می توانند قابلیت فقط کاهنده یا فقط افزاینده به همراه داشته باشند و برای داشتن هر دو ویژگی افزایش و کاهشی باید یک طب
دسته بندی برق
فرمت فایل zip
حجم فایل 3081 کیلو بایت
تعداد صفحات فایل 17
شبیه سازی مقاله Trans-Z-Source Inverters

فروشنده فایل

کد کاربری 7169

عنوان لاتین مقاله:

Trans-Z-Source Inverters

این مقاله دارای شبیه سازی و 40 صفحه گزارشکار کامل و فایل 23 اسلاید پاورپویینت برای ارائه در کلاس می باشد

برق-قدرت

پروژه درسی

الکترونیک قدرت 2


گزارش کار

ﻓﻬﺮﺳﺖ

ﭼﻜﻴﺪه

ﻣﻘﺪﻣﻪ

مبدل منبع ولتاژ (VSI)

مبدل منبع جریان (CSI)

مبدل منبع امپدانس (ZSI

اینورترهای منبع امپدانس ترانسی

اینورترهای منبع امپدانس ترانسی ولتاژ تغذیه

اینورترهای منبع امپدانس ترانسی جریان تغذیه

مقایسه اینورترهای منبع امپدانسی و اینورترهای شبه منبع امپدانسی

شبیه سازی و نتایج تجربی

نتیجه

منابع

چکیده:

این مقاله مفهوم اینورترهای Z-source را به اینورترهای trans-Z-source گسترش می دهد. اینورترهای Z-source از یک شبکه امپدانسی متشکل از دو سلف و دو خازن مابین ورودی و پل سه فاز استفاده می کنند . یک مبدل منبع ولتاژ یا یک مبدل منبع جریان، تنها می توانند قابلیت فقط کاهنده یا فقط افزاینده به همراه داشته باشند و برای داشتن هر دو ویژگی افزایش و کاهشی باید یک طبقۀ افزاینده یا کاهنده به هر یک از آنها اضافه شود در حالیکه یک مبدل منبع امپدانس بدون نیاز به اضافه کردن طبقۀ کاهنده یا افزاینده اضافی، خود به تنهایی یک مبدل افزایشی-کاهشی است. در اینورترهای منبع امپدانس ترانسی، تمام شبکه های امپدانس از یک ترانسفورماتور و یک خازن تشکیل شده است. اینورترهای منبع امپدانس ترانسی (TZSI)، با حفظ ویژگی های اصلی یک اینورتر منبع امپدانسی (ZSI)، دارای ویژگی های منحصر به فرد دیگری از جمله افزایش بهره ولتاژ، کاهش استرس ولتاژ، و گسترش دامنه عملکرد موتور وقتی که نسبت دور سیم پیچ های ترانسفورماتور بیشتر از یک است، می باشد. در ادامه شبیه سازی و نتایج تجربی ولتاژ و جریان تغذیه ترانس ZSIs به منظور آنالیز و تحلیل ارائه شده است.


پاورپوینت

ﻣﻘﺪﻣﻪ

اینورترهای منبع امپدانس ترانسی

طراحی معادلات ( آنالیز ریاضی )

مقایسه انواع اینورترهای منبع امپدانسی و شبه منبع امپدانسی

شبیه سازی و نتایج تجربی

نتیجه

منابع



شبیه سازی گزارش پروژه دوم درس کنترل سیستم های گسترده (DCS) کنترل ولتاژ بیسیم در ریز شبکه های هوشمند

بحث اصلی این مقاله در مورد کنترل ولتاژ در ریز شبکه های هوشمند استدر واقع ریز شبکه ها به عنوان شبکه های ولتاژ پایین و ولتاژ متوسط، با داشتن مزایا و پتانسیل های موجود می توانند یک سری مزایای کلان و عمده را برای شبکه توزیع سراسری با بهبود بازده انرژی، کیفیت توان و قابلیت اطمینان برای رضایت مشتریان فراهم کنند در این مقاله یک ایده جدید به نام ایده توز
دسته بندی برق
فرمت فایل zip
حجم فایل 585 کیلو بایت
تعداد صفحات فایل 19
شبیه سازی گزارش پروژه دوم درس کنترل سیستم های گسترده (DCS) کنترل ولتاژ  بیسیم در ریز شبکه های هوشمند

فروشنده فایل

کد کاربری 7169
عنوان لاتین: Distributed Scheduling of Wireless Communications for Voltage Control in Micro Smart Grid
عنوان فارسی: شبیه سازی گزارش پروژه دوم درس کنترل سیستم های گسترده ( DCS ) کنترل ولتاژ بیسیم در ریز شبکه های هوشمند
این مقاله دارای شبیه سازی و گزارشکارکامل می باشد.

موضوع مقاله:

بحث اصلی این مقاله در مورد کنترل ولتاژ در ریز شبکه های هوشمند است.

در واقع ریز شبکه ها به عنوان شبکه های ولتاژ پایین و ولتاژ متوسط، با داشتن مزایا و پتانسیل های موجود می توانند یک سری مزایای کلان و عمده را برای شبکه توزیع سراسری با بهبود بازده انرژی، کیفیت توان و قابلیت اطمینان برای رضایت مشتریان فراهم کنند.
در این مقاله یک ایده جدید به نام ایده توزیع زمانی و استفاده از یک شبکه مخابراتی وایرلس، عمل کنترل ولتاژ شبکه توزیع انجام شده است


شبیه سازی مقاله راه حل مبتنی بر پاسخ به تقاضا برای مدیریت LMP در بازار برق

راه حل های پاسخ تقاضا مبتنی بر مدیریت LMP در بازارهای برق دارای فایل شبیه سازی، ترجمه، گزارش کار کامل و 11 اسلاید آماده ارائه در قالب پاورپوینت
دسته بندی برق
فرمت فایل zip
حجم فایل 6118 کیلو بایت
تعداد صفحات فایل 20
شبیه سازی مقاله راه حل مبتنی بر پاسخ به تقاضا برای مدیریت LMP در بازار برق

فروشنده فایل

کد کاربری 7169

عنوان لاتین مقاله:

A demand response based solution for LMP management in power markets

عنوان فارسی مقاله:

راه حل های پاسخ تقاضا مبتنی بر مدیریت LMP در بازارهای برق

دارای فایل شبیه سازی، ترجمه، گزارش کار کامل و 11 اسلاید آماده ارائه در قالب پاورپوینت

راه حل مبتنی بر پاسخ به تقاضا برای مدیریت LMP در بازار برق

چکیده:

در سالهای اخیر، اکثر کشورها به سمت تجدید ساختار سیستم قدرت روی آورده اند. همراه با این تجدید ساختار در بازار برق مسائلی مانند مسئله LMP پیش آمده که باید بر اساس پاسخ تقاضا حل شود. در این مقاله، برنامه های مدیریت سمت تقاضا (DSM) برای حل LMP در بازار برق و تجربه اپراتورهای سیستم در سراسر فعالیتهای روزانه خود ارائه شده است. در عمل، این برنامه ها می تواند به اپراتور مستقل سیستم (ISO) کمک کند تا نوسانات قیمت را در ساعات پیک تقاضا کاهش دهد. برای نیل به این منظور، یک پخش بار بهینه چند هدفه به منظور بررسی تاثیر مدل برای یک برنامه پاسخ تقاضا در جهش قیمت (ساعاتی قیمت برق بالا می رود) پیشنهاد شده است. منحنی بار منطقه Mid-Atlantic در شبکه نیویورک (سیستم IEEE 9 باسه)، برای مقایسه قیمت های محلی در سیستم با و بدون برنامه پاسخ تقاضای اضطراری (EDRP) به عنوان مطالعه موردی بکار رفته است. نتایج، اثربخشی این برنامه ها را در بازار برق نشان می دهد و مشخص می کند که آنها به عنوان ابزار مناسبی در مدیریت LMPs بازار برق، بسیار موثر هستند.

مقدمه

تجدید ساختار و خصوصی سازی اموال، هنگامیکه بدرستی با اصول اجتماعی و اقتصادی مرتبط با فرهنگ های خاص در سراسر جهان مدیریت شود، می تواند به سرویس بهتر، بهبود اصول فنی، قابلیت اطمینان بهبود یافته و کاهش هزینه های مشتری منجر شود. اپراتور مستقل سیستم در سیستم برق تجدید ساختار یافته، تلاش می کند تا قابلیت اطمینان و امنیت سیستم را کنترل کند و در عین حال رفاه اجتماعی را به حداکثر رساند. برای داشتن یک شبکه قابل اتکا، نه تنها داشتن تولید ذخیره به سیستم کمک می کند، بلکه پاسخ تقاضا نیز از سوی دیگر می تواند به کنترل LMP منجر شود.

در نتیجه، علاوه بر پاسخ به پیشنهادات، مشارکت مشتریان در بازار برق، رقابت کلی را نیز افزایش می دهد. در پاسخ به نوسانت قیمت، معمولا مشتریان تقاضای خود را اصلاح می کنند که نتیجه آن جهش های کوچکتر قیمت می باشد. برای مثال برخی مشتری ها می توانند به جهش قیمت پاسخ دهند و از اینرو تقاضای خود را به ساعاتی که قیمت برق ارزانتر است، منتقل می کنند.

پاسخ تقاضا (DR) بدین معنی است که مشتری نهایی، الگوی عادی مصرف خود را در پاسخ به تغییرات قیمت برق در طول زمان، تغییر دهد (تقاضای خود را متناسب با قیمت برق تنظیم کند). DR به دو گروه اصلی و چندین زیر گروه تقسیم می شود:

A : برنامه های تشویقی

(A-1) کنترل مستقیم بار

(A-1) سرویس قادر به وقفه/محدود کردن

(A-1) تقاضای مناقصه/خرید

(A-1) برنامه پاسخ تقاضای اضطراری

(A-1) برنامه ظرفیت بازار

(A-1) بازار سرویس کمکی

B : برنامههای مبتنی بر زمان

(B-1) برنامه زمان استفاده

(B-1) برنامه قیمت گذاری زمان واقعی

(B-1) برنامه قیمت گذاری پیک حیاتی

فواید DR عبارتند از: افزایش راندمان استاتیکی و دینامیکی، استفاده بهتر از ظرفیت، الگوی قیمت گذاری که هزینهای واقعی را بهتر منعکس می کند، کاهش جهش قیمت، کاهش تمرکز زدایی بازار برق و بهبود مدیریت خطر.

EDRP یک برنامه DR می باشد که مشوقی برای مشتریان است تا در زمانهایی که سیستم قدرت در شرایط اضطراری بسر می برد، بارها را کاهش دهند؛ با این وجود این انقطاع داوطلبانه بوده و اگر مشتری کاهش یا قطع بار نکند، هیچ مجازاتی اعمال نمی شود.

همچنین نرخها ثابت و مشخص بوده و هیچ ظرفیت پرداختی واریز نمی شود. جزئیات برخی از برنامه های EDRP که در بازار برق بکار رفته را می توان در مرجع 6 یافت. اپراتورهای سیستم قدرت بزرگ برای حفظ قابلیت اطمینان سیستم، بصورت اولیه می بایستی MW خروجی ژنراتورها را تنظیم کنند.

در اصل، تغییرات در تقاضای برق می تواند مانند حرکات ژنراتور در مواجهه با نیازمندی های قابلیت اطمینان عمل کند. بنابراین بار مشتریان می تواند در این بازارها شرکت کند. مشارکت این ریزمنابع، قابلیت اطمینان را افزایش داده و هزینه های نگهداری قابلیت اطمینان را کاهش می دهد. از اینرو برای مشتریانی که در این امر مشارکت می کنند، موجب صرفه جویی مالی می شود.

در ساعات پیک که تقاضا بالاست، معمولا قیمت برق نیز بالاست. برای یک پیشامد احتمالی در سیستم قدرت یا افزایش ناگهانی تقاضا در این ساعات، قیمت برق سریعا افزایش می یابد. بنابراین در این شرایط، بوسیله EDRP، مصرف کنندگان بصورت منابع جدید عمل می کنند. در نتیجه با بهره گیری از این منابع جدید، هزینه سیستم و نگهداری قابلیت اطمینان کاهش می یابد. بعلاوه برای بهبود امنیت سیستم، مدیریت بار نیز می تواند انجام شود.

در این مقاله، در بخش 2، مدل یک EDRP ارائه شده است. تاثیر ادغام مدل EDRP در قیمت بازار برق، در بخش 3 بررسی شده است. بخشهای 4 و 5 نیز بترتیب به مطالعه موردی و نتیجه گیری اختصاص دارند.


مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشارمدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار
دسته بندی برق
فرمت فایل docx
حجم فایل 3982 کیلو بایت
تعداد صفحات فایل 141
مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار

فروشنده فایل

کد کاربری 4674

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار

چکیده

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

کلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.


مبانی نظری شبیه سازی

پیشینه ومبانی نظری پژوهش شبیه سازی
دسته بندی علوم انسانی
فرمت فایل docx
حجم فایل 32 کیلو بایت
تعداد صفحات فایل 18
مبانی نظری شبیه سازی

فروشنده فایل

کد کاربری 4674

پیشینه ومبانی نظری پژوهش شبیه سازی

توضیحات: فصل دوم (پیشینه ی پژوهش)

همرا با منبع نویسی درون متنی فارسی و انگلیسی کامل به شیوه APA جهت استفاده فصل دو

توضیحات نظری در مورد متغیر و همچنین پیشینه در مورد متغیر مربوطه و متغیرهای مشابه

رفرنس نویسی و پاورقی دقیق و مناسب برای فصل دو

منبع : دارد (به شیوه APA)

نوع فایل: WORD و قابل ویرایش با فرمت doc

قسمتی از مبانی نظری متغیر:

شبیه سازی نسخه ای از بعضی وسایل حقیقی یا موقعیت های کاری است که تلاش دارد تا بعضی از جنبه های رفتاری یک سیستم فیزیکی یا انتزاعی را به وسیله ی رفتار سیستم دیگری نمایش دهد که بیشتر در سیستم های طبیعی و سیستم های انسانی کاربرد دارد. همچنین شبیه سازی نمایش مجدد یا خلق مجدد یک شیء یا موضوع واقعی یا یک موقعیت می باشد. این تکنیک همانند آینه، واقعیات را همانندسازی می کند افزون بر این احتمال وارد آورد صدمه یا آسیب به شرکت کنندگان وجود ندارد (جویس و همکاران، 1389، ص 220 تا 222).

شبیه سازی های آموزشی به چهار دسته شبیه سازهای زنده (استفاده افراد واقعی از تجهیزات شبیه سازی شده در محیط واقعی)، شبیه سازی ساختاری (استفاده افراد شبیه سازی شده در محیط غیر واقعی)، شبیه سازی ساختاری (استفاده افراد شبیه سازی شده از ابزار و تجهیزات شبیه سازی شده در محیطی شبیه سازی شده)، و شبیه سازی های ایفای نقش (بازی افراد واقعی و صحنه سازی کار واقعی) تقسیم می شوند (شیفلت و همکاران، 2006، ص 378).

2-2-2 مزایای استفاده از شبیه سازی:

شبیه سازی های کامپیوتری، برنامه های نرم افزاری هستند که تکرار یا تقلیدی از پدیده های دنیای واقعی هستند و اگر به درستی اجرا شوند می توانند به دانش آموزان در یادگیری درباره ی رویدادها و فرآیندهایی که ممکن است یادگیری آنها بسیار هزینه بر یا از نظر امنیتی خطر آفرین باشند، کمک نمایند. مطالعات نشان داده اند که شبیه سازهای کامپیوتری می تواند به اندازه ی یادگیری در دنیای واقعی مؤثر باشد و امکان تجربیات آزمایشگاهی مفاهیم علمی را برای دانش آموزان فراهم نماید. همچنین این شیوه ی آموزشی می تواند سبب ارتقاأ سطح مهارت های یادگیری فراگیران شود و مهارت حل مسأله ی آنان را ارتقاء بخشد و در واقع نقش یک همکار تعاملی را برای دانش آموزان بازی نماید (مایکل، 2001).

در شبیه سازی تلاش بر این است که شرایط یادگیری آن قدر به شرایط واقعی نزدیک شود که مفاهیم آموخته شده، قابل انتقال به جهان واقعی شود. تحقیقات نشان داده اند که شبیه سازی برای ایجاد علاقه و جذابیت مؤثر است. همچنین شبیه سازی برای مهارت های عملی مناسب تر از مهارت های ذهنی اند، بدین معنی که کاربرد شبیه سازی هنگامی مؤثرتر است که اصول و مفاهیم ذهنی و پایه به وسیله ی روش های دیگر آموزش داده شده باشند و سپس برای آموزش مهارت های عملی از شبیه سازی استفاده شود (پازارگادی و صادقی، 1389، ص 165).

2-2-3 انواع شبیه سازی ها و نقش آنها:

برخی شبیه سازی ها بازی اند و برخی دیگر واقعی، برخی رقابتی اند و برخی همکارانه، و برخی به وسیله ی افرادی به اجرا در آیند که خلاف استانداردهای خود عمل می کنند: مثلاً در بازی معروف «مونوپولی» رقابت حرف اول را می زند. این بازی فعالیت واقعی سفته بازی را شبیه سازی کرده و عناصر زیادی از فعالیت سفته بازی را شبیه سازی کرده و عناصر زیادی از فعالیت سفته بازی در زندگی واقعی را در بر می گیرد. بازیگر برنده قواعد سرمایه گذاری و سفته بازی را آن گونه که در بازی مجسم شده اند فرا می گیرد (جویس و همکاران، 1389). شبیه سازی های می توانند به منظور بهبود دانش و مهارت فردی و گروهی نیز به کار گرفته شوند. استفاده از شبیه سازی ها ضمن ایجاد هم افزایی گروهی و ایجاد زمینه برای درک ارزش همکاری و اجماع و اهمیت مهارت های عقلانی و فردی می تواند معلم را در دستیابی به ایجاد راه هایی برای تجربه های قدرتمند و فراموش نشدنی برای شرکت کنندگان کمک نماید اگر که شبیه سازها را به عنوان ابزار و نه به عنوان برنامه در نظر بگیرند (اسزومال، 2000).


l


شبیه سازی شکل دهی ورقها با استفاده از فرمول بندی الاستو پلاستیک

امروزه شبیه سازی شکل دهی ورقها ، امکان بررسی رفتار ورق در حین شکل دهی و در نتیجه طراحی ابزار مناسب قبل از فرایند ساخت را فراهم می سازد
دسته بندی مواد و متالوژی
فرمت فایل doc
حجم فایل 105 کیلو بایت
تعداد صفحات فایل 54
شبیه سازی شکل دهی ورقها با استفاده از فرمول بندی الاستو پلاستیک

فروشنده فایل

کد کاربری 15

امروزه شبیه سازی شکل دهی ورقها ، امکان بررسی رفتار ورق در حین شکل دهی و در نتیجه طراحی ابزار مناسب قبل از فرایند ساخت را فراهم می سازد. این مسئله به ویژه در ساخت قالب قطعات با ابعاد دقیق بسیار حائز اهمیت است و می تواند هزینه های ساخت قالب را بطور قابل ملاحظه ای کاهش دهد. در این میان برای رسیدن به دقت مورد نظر انتخاب یک مدل ریاضی مناسب برای تغییر شکل الاستیک پلاستیک ورق از اهمیت ویژه ای برخوردار است. در این تحقیق مهمترین فرمول بندیهای مورد استفاده در تغییر شکلهای الاستوپلاستیک با کرنشهای بزرگ در سی سال اخیر مورد بررسی قرار گرفته است. نتایج بدست آمده از این بررسیها نشان می دهد که فرمول بندی ارائه شده توسط Xiao, Bruhns , Meyers(2000) که بطور اختصار X-B-M(2000) نوشته می شود بسیاری از نواقص فرمول بندیهای قبلی را برطرف نموده است. در این تحقیق فرمول بندی الاستوپلاستیک X-B-M (2000) برای شبیه سازی شکل دهی ورقها انتخاب شده است. در این فرمول بندی از نرخ تنش لگاریتمی بر مبنای اسپین لگاریتمی و نیز معیار کرنش لگاریتمی استفاده شده است.

در این بررسی همچنین فرمول بندیهای مختلف برای پوسته ها با سه ، پنج ، شش و هفت درجه آزادی مورد بررسی و مقایسه قرار گرفته است

فهرست مطالب

خلاصه

مقدمه

شبیه سازی شکل دهی ورقها

فرضیات سینماتیکی در تغییر شکلهای الاستوپلاستیک همراه با چرخشها و کرنشهای بزرگ

انتخاب فرمول بندی الاستوپلاستیک مناسب برای شبیه سازی شکل دهی ورقها

مراحل تکوین فرمول بندی الاستوپلاستیک X-B-M(2000)

روش اجرای طرح


مقاله درباره استفاده از DIS برای مربوط کردن شبیه سازی و متحرک سازی در simulink و VRML

دانلود مقاله درباره استفاده از dis برای مربوط کردن شبیه سازی و متحرک سازی در simulink و VRML
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 14 کیلو بایت
تعداد صفحات فایل 17
مقاله درباره استفاده از DIS برای مربوط کردن شبیه سازی و متحرک سازی در simulink و VRML

فروشنده فایل

کد کاربری 4152

*مقاله درباره استفاده از DIS برای مربوط کردن شبیه سازی و متحرک سازی در simulink و VRML*

خلاصه:

این مقاله تکنیکهای تواناسازی کنترل سیستمهای طراح برای سادگی و یکپارچگی تجسم کامل در بررسیهای شبیه سازی را شرح می دهد. مدل تصوری (تجسمی) (مجموعه ابزارهای متحرک سازیVRML) در اجرای نخستین تأثیر متقابل با simulink دارد، اما هدفهای طرح در ساختن مفهوم شبیه ساری platform مستقل می باشد. مدل تصوری به وسیله انجام دادن اجرای اولیه ای از شبیه سازی باراندازی یک وسیله زیر آبی خودگردان برای یک ایستگاه باراندازی ارزیابی شده است.

این مقاله همچنین شبیه سازی اساسی معماری تمرکز یافته را که برای استاندارد توزیع شده IEEE,DIS مورد استفاده قرار می گیرد را شرح می دهد.

کلمات کلیدی: تجسم سازی، شبیه سازی، قالب سازی

1-معرفی

تجسم سازی از داده علمی یک زمینه تحقیق فعال برای سالها بوده است و پیشرفت زیادی در این زمینه، برای نمونه تجسم سازی از مجموعه داده های بزرگ و تجسم سازی سیستم مکانیکی ساخته شده است. تجسم سازی 3D از داده علمی در فهمیدن اندازه گیریهای پیچیده بسیار مفید است. در زمینه کنترل مهندسی تجسم ساری از ننتایج شبیه سازی طرحهای زمانی مهمی بوده است. تجسم سازی 3D کمترین اهمیت را در این زمینه داشته است اما مدلهای تجسم سازی یک زمینه مفید با پتانسیل جدید که با تکنیکهایی از مهندسی عمران و مکانیک بهتر از معماری بر پا شده است را باز کرده است.

زمینه متحرک سازی هنوز پیشرفته تر از تجسم سازی در داده های ثابت نبوده است، اما سیستمهای CAD و با معرفی استانداردها، کامپیوترهای بسیار قوی و وسایل موجود رایج برای ساختن دنیاهای مجازی چند کاربری برای بازیها، مشابه سازیها برای کشتی‌ها، هواپیماها، میدانهای جنگ و غیره و کارخانه های صنعتی مجازی شده است. پیشرفت قابل توجه ای نسبتا به وسیله قدرت بالایی از محاسبات کامپیوتری در این زمینه انجام شده است.

کار بسیاری در زمینه تجسم سازی و متحرک سازی در رابطه با کاربرد مهندسی کنترل و بار هر دوی متحرک سازی 2D و متحرک سازی 3D بسیار پیشرفته انجام شده است. به هر حال تلاشهای بسیاری در ساختن مدل و در یکپارچگی غیر استاندارد در محیط شبیه سازی سرمایه گذاری شده است. یک نیروی بالقوه بزرگ برای استفاده از متحرک سازی ها برای فهم بهتر اجرای یک سیستم مخصوصا برای مهندسان غیر کنترلی جایی

که یک تجسم سازی ساده با طرح زمانی بسیار سنتی ترکیب شده است.


مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است
دسته بندی برق
فرمت فایل doc
حجم فایل 4266 کیلو بایت
تعداد صفحات فایل 143
مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

فروشنده فایل

کد کاربری 1024

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

چکیده

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

کلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

Key words: Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

فهرست مطالب

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

فهرست شکلها

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

صفحه 5

شکل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شکل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

صفحه 9

شکل (2-1) ترانسفورماتور

صفحه 14

شکل (2-2) ترانسفورماتور ایده ال

صفحه 14

شکل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شکل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شکل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شکل (2-10) رابطه بین و

صفحه 30

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شکل (2-12) رابطه بین و

صفحه 32

شکل (2-13) رابطه بین و

صفحه 32

شکل (2-14) منحنی مدار باز با مقادیر rms

صفحه 36

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شکل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شکل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شکل (2-19) میزان خطای استفاده از منحنی rms

صفحه 41

شکل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شکل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

صفحه 47

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

صفحه 49

شکل (3-1) دیاگرام فازوری خطاها

صفحه 62

شکل (3-2) شکل موج ولتاژ Vab

صفحه 63

شکل (3-3) شکل موج ولتاژ Vbc

صفحه 63

شکل (3-4) شکل موج ولتاژ Vca

صفحه 63

شکل (3-5) شکل موج ولتاژ Vab

صفحه 63

شکل (3-6) شکل موج جریان iA

صفحه 64

شکل (3-7) شکل موج جریان iB

صفحه 64

شکل (3-8) شکل موج جریان iA

صفحه 64

شکل (3-9) شکل موج جریان iA

صفحه 64

شکل (3-10) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شکل (3-11) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شکل (3-12) شکل موجهای جریان ia , ib , ic

صفحه 68

شکل (3-13) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-14) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-15) شکل موجهای جریان , iB iA

صفحه 69

شکل (3-16) شکل موج جریان iA

صفحه 70

شکل (3-16) شکل موج جریان iB

صفحه 70

شکل (3-17) شکل موج جریان iC

صفحه 70

شکل (3-18) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شکل (3-19) شکل موجهای جریان ia , ib , ic

صفحه 71

شکل (3-20) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شکل (3-21) شکل موجهای جریان ia , ib , ic

صفحه 73

شکل (3-22) شکل موجهای جریان ia , ib , ic

صفحه 74

شکل (3-23) شکل موج ولتاژ Va

صفحه 74

شکل (3-24) شکل موج ولتاژ Vb

صفحه 74

شکل (3-25) شکل موج ولتاژ Vc

صفحه 74

شکل (3-26) شکل موج جریانiA

صفحه 74

شکل (3-27) شکل موج جریان iB

صفحه 74

شکل (3-28) شکل موج جریان iC

صفحه 74

شکل (3-29) شکل موج جریانiA

صفحه 75

شکل (3-30) شکل موج جریان iB

صفحه 75

شکل (3-31) موج جریان iC

صفحه 75

شکل (3-32) شکل موج جریانiA

صفحه 75

شکل (3-33) شکل موج جریان iB

صفحه 75

شکل (3-34) شکل موج جریان iC

صفحه 75

شکل (3-35) شکل موج ولتاژ Va

صفحه 76

شکل (3-36) شکل موج ولتاژ Vb

صفحه 76

شکل (3-37) شکل موج ولتاژ Vc

صفحه 76

شکل (3-38) شکل موج جریانiA

صفحه 76

شکل (3-39) شکل موج جریان iB

صفحه 76

شکل (3-40) شکل موج جریان iC

صفحه 76

شکل (3-41) شکل موج جریانiA

صفحه 76

شکل (3-42) شکل موج جریان iB

صفحه 76

شکل (3-43) شکل موج جریان iC

صفحه 76

شکل (3-44) شکل موج ولتاژ Va

صفحه 77

شکل (3-45) شکل موج ولتاژ Vb

صفحه 77

شکل (3-46) شکل موج ولتاژ Vc

صفحه 77

شکل (3-47) شکل موج جریانiA

صفحه 77

شکل (3-48) شکل موج جریان iB

صفحه 77

شکل (3-49) شکل موج جریان iC

صفحه 77

شکل (3-50) شکل موج جریانiA

صفحه 77

شکل (3-51) شکل موج جریان iB

صفحه 77

شکل (3-52) شکل موج جریان iC

صفحه 77

شکل (3-53) شکل موج ولتاژ Va

صفحه 78

شکل (3-54) شکل موج ولتاژ Vb

صفحه 78

شکل (3-55) شکل موج ولتاژ Vc

صفحه 78

شکل (3-56) شکل موج جریانiA

صفحه 78

شکل (3-57) شکل موج جریان iB

صفحه 78

شکل (3-58) شکل موج جریان iC

صفحه 78

شکل (3-59) شکل موج جریانiA

صفحه 78

شکل (3-60) شکل موج جریان iB

صفحه 78

شکل (3-61) شکل موج جریان iC

صفحه 78

شکل (3-62) شکل موج ولتاژ Va

صفحه 79

شکل (3-63) شکل موج ولتاژ Vb

صفحه 79

شکل (3-64) شکل موج ولتاژ Vc

صفحه 79

شکل (3-65) شکل موج جریانiA

صفحه 79

شکل (3-66) شکل موج جریان iB

صفحه 79

شکل (3-67) شکل موج جریان iC

صفحه 79

شکل (3-68) شکل موج جریانiA

صفحه 79

شکل (3-69) شکل موج جریان iB

صفحه 79

شکل (3-70) شکل موج جریان iC

صفحه 79

شکل (3-71) شکل موج ولتاژ Va

صفحه 80

شکل (3-72) شکل موج ولتاژ Vb

صفحه 80

شکل (3-73) شکل موج ولتاژ Vc

صفحه 80

شکل (3-74) شکل موج جریانiA

صفحه 80

شکل (3-75) شکل موج جریان iB

صفحه 78

شکل (3-76) شکل موج جریان iC

صفحه 80

شکل (3-77) شکل موج جریانiA

صفحه 80

شکل (3-78) شکل موج جریان iB

صفحه 80

شکل (3-79) شکل موج جریان iC

صفحه 80

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-114) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-130) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-131) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-132) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-133) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-134) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-135) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-136) شکل موجهای ولتاژ) (kV

صفحه 109

شکل (3-137) شکل موجهای ولتاژ) (kV

صفحه 110

شکل (3-138) شکل موجهای جریان (kA)

صفحه 111

شکل (3-139) شکل موجهای ولتاژ) (kV

صفحه 112

شکل (3-140) شکل موجهای ولتاژ) (kV

صفحه 113

شکل (3-141) شکل موجهای جریان (kA)

صفحه 114

شکل (3-142) شکل موجهای جریان (kA)

صفحه 115

شکل (3-143) شکل موجهای جریان (kA)

صفحه 116

شکل (3-144) شکل موجهای جریان (kA)

صفحه 117

شکل (3-145) شبکه 14 باس IEEE

صفحه 118