فایلساز

فروشگاه فایلساز ، فروش فایل ارزان , فروش ارزان فایل, پروژه, پایان نامه, مقاله و ...

فایلساز

فروشگاه فایلساز ، فروش فایل ارزان , فروش ارزان فایل, پروژه, پایان نامه, مقاله و ...

فایل مدلسازی پل راه آهن

Software Modeling of Railway Bridge
دسته بندی عمران
فرمت فایل rar
حجم فایل 789 کیلو بایت
تعداد صفحات فایل 1
فایل مدلسازی پل راه آهن

فروشنده فایل

کد کاربری 2031

در این فایل آموزشی سعی بر این شده است که فایل کاملی در خصوص پل راه آهن با تمام پارامترهای اختصاص یافته به آن قرار داده شود پارامترهای در این فایل آموزشی قرارداده شده عبارتند از: 1.بارگذاری کامل پل، کلاس بندی حالت بار راه آهن، تعریف بار قطار ، معرفی خطوط عبور،معرفی حالت های بار متحرک ، معرفی ضریب تشدید،معرفی کوله های پل و...


روشهای تحلیلی و معیارهای پذیرش دستورالعمل مقاوم سازی

در این بخش به بررسی ضوابط کلی تحلیل شامل ضوابط خاص مدلسازی ، رفتار اجزای سازه ، پیچش ، اثراتP – Δ ، اثر همزمانی مؤلفه های زلزله ، ترکیب بارهای جانبی و واژگونی می پردازیم
دسته بندی عمران
فرمت فایل doc
حجم فایل 57 کیلو بایت
تعداد صفحات فایل 28
روشهای تحلیلی و معیارهای پذیرش دستورالعمل مقاوم سازی

فروشنده فایل

کد کاربری 7169

در این فصل به مروری بر ضوابط کلی تحلیل ، روشهای تحلیل اعم از روشهای خطی استاتیکی ، خطی دینامیکی ، غیر خطی استاتیکی و غیر خطی دینامیکی و معیارهای پذیرش اعضا در هر یک از این روشها از دید دستورالعمل مقاوم سازی می پردازیم . در این بخش روشهای خطی استاتیکی و دینامیکی بصورت مشروح و روشهای غیر خطی بصورت گذرا ذکر می شود .

3-1- ضوابط کلی تحلیل

در این بخش به بررسی ضوابط کلی تحلیل شامل ضوابط خاص مدلسازی ، رفتار اجزای سازه ، پیچش ، اثراتP – Δ ، اثر همزمانی مؤلفه های زلزله ، ترکیب بارهای جانبی و واژگونی می پردازیم .

3-1-1- مدلسازی

3-1-1-1- فرضیات اولیه

سازه باید به صورت سه بعدی مدلسازی شود . در موارد ذکر شده در این بخش برای تحلیل های غیر خطی می توان از مدل دو بعدی نیز استفاده نمود . در صورتی که سازه دارای دیافراگم صلب باشد و اثرات پیچش در سازه مطابق بخش (3-1-2 ) ملحوظ شده باشد از مدل دو بعدی در تحلیلهای غیر خطی می توان استفاده کرد . هنگامی که سازه در تحلیل های غیر خطی دو بعدی مدل می گردد ، باید برای محاسبه سختی و مقاومت اجزاء و اعضای سازه خواص سه بعدی آنها مد نظر قرار گیرد .

در تحلیل های غیر خطی ، اگر اتصالات ضعیف تر و یا دارای شکل پذیری کمتر از اعضای متصل شونده باشد و یا به نحوی تخمین زده شود که با در نظر گرفتن اتصالات در مدل ، نتایج حاصل بیش از 10 درصد تغییر خواهد داشت ، اثر آنها باید به نحو مناسب در مدل سازه منظور گردد .

3-1-1-2- اعضای اصلی و غیر اصلی

اعضای سازه ای که در سختی جانبی و یا توزیع نیروها در سازه مؤثر بوده و یا در اثر تغییر مکان جانبی سازه تحت تأثیر نیرو قرار می گیرند به دو گروه اصلی و غیر اصلی تقسیم می شوند . اعضای اصلی اعضایی هستند که برای مقابله با فرو ریزش ساختمان در اثر زلزله در نظر گرفته شده اند . سایر اعضایی که برای تحمل بار جانبی در مقایسه با اعضای اصلی در نظر گرفته نشده اند به عنوان اعضای غیر اصلی شناخته می شوند . این اعضاء حتی ممکن است تحت تأثیر بار جانبی قرار گیرند .

اعضای اصلی باید برای نیروها و تغییر شکلهای ناشی از زلزله در ترکیب با بارثقلی و اعضا غیر اصلی باید برای تغییر شکلهای ناشی از زلزله در ترکیب با آثار بارثقلی ارزیابی شوند .

در طبقه بندی اعضای ساختمان به دو گروه اصلی و غیر اصلی نکات زیر باید مورد توجه قرار گیرد :

1 ـ در تحلیل های خطی فقط سختی و مقاومت اعضای اصلی منظور می گردد . چنانچه سختی اعضای غیر اصلی از %25 جمع سختی اجزای اصلی تجاوز کند باید تعدادی از آنها را جزء اعضای اصلی محسوب نمود تا آنجا که این نسبت از %25 کمتر شود .

2- دسته بندی اعضای اصلی و فرعی نباید به نحوی انجام شود که ساختمان نامنظم به منظم تبدیل شود .

3 ـ در تحلیل های غیرخطی ، سختی و مقاومت هر دو گروه اعضای اصلی و غیر اصلی و همچنین اثرات کاهندگی باید در مدلسازی وارد شود .

3-1-1-3- رفتار اجزای سازه

رفتار اجزای سازه با توجه به نوع تلاش داخلی آنها و منحنی نیرو ـ تغییرشکل حاصله به صورت کنترل شونده توسط تغییر شکل و یا کنترل شونده توسط نیرو می باشد . منحنی نیرو ـ تغییر شکل مطابق شکلهای (3-1) تا (3-3 ) می تواند بیانگر رفتار شکل پذیر ، نیمه شکل پذیر یا ترد باشد . در رفتار شکل پذیر ، منحنی نیرو ـ تغییر شکل مطابق شکل (3-1 ) دارای چهار قسمت است . در قسمت اول (شاخه OA) رفتار ارتجاعی خطی است . در قسمت دوم (شاخه AB) رفتار خمیری کامل یا خمیری با امکان سخت شوندگی است . در قسمت سوم ( شاخه BC) مقاومت به شدت کاهش می یابد . اما بطور کلی از بین نمی رود و در قسمت چهارم ( شاخه CD) رفتار مجدداً خمیری اما نرم شونده است در صورتی که نسبت تغییر شکل متناظر با آستانه کاهش مقاومت به تغییر شکل حد خطی e / g شکل (3-1 ) بزرگتر از 2 باشد اعضای اصلی کنترل شونده توسط تغییر شکل محسوب می شود اما اعضای غیر اصلی با هر نسبت e / g کنترل شونده توسط تغییر مکان هستند .


بررسی تکنیکهای مدل سازی

در دهه 1880، اسبرن رینولدز، مهندس انگلیسی، گذار بین جریان لایه ای، و جریان متلاطم را در یک لوله مطالعه کرد او کشف کرد که پارامتر زیر (که بعداً به نام او خوانده شد) معیاری است که با آن می توان نوع جریان را به دست آورد بعدها، آزمایش ها نشان دادند که عدد رینولدز پارامتری کلیدی برای دیگر حالت های جریان نیز می‌باشد از این‌رو، به طور کلی، داریم
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 196 کیلو بایت
تعداد صفحات فایل 30
بررسی تکنیکهای مدل سازی

فروشنده فایل

کد کاربری 8044

= نیروی چسبندگی

= نیروی فشاری

= نیروی گرانش

= نیروی کشش سطحی

= نیروی تراکم پذیری

نیروهای اینرسی در اکثر مسائل مکانیک سیالات مهم هستند. نسبت نیروی اینرسی به هر یک از نیروهای دیگر فهرست شده در بالا، پنج گروه بی‌بعد اصلی در مکانیک سیالات را تشکیل می دهد.

در دهه 1880، اسبرن رینولدز، مهندس انگلیسی، گذار بین جریان لایه ای، و جریان متلاطم را در یک لوله مطالعه کرد. او کشف کرد که پارامتر زیر (که بعداً به نام او خوانده شد)

معیاری است که با آن می توان نوع جریان را به دست آورد. بعدها، آزمایش ها نشان دادند که عدد رینولدز پارامتری کلیدی برای دیگر حالت های جریان نیز می‌باشد. از این‌رو، به طور کلی، داریم:

که در آن L طول مشخصه توصیفی هندسه میدان جریان است. عدد رینولدز عبارت است از نسبت نیروهای اینرسی به نیروهای چسبندگی. جریان با عدد رینولدز “بزرگ” معمولاً متلاطم است. جریانی که در آن نیروهای اینرسی در مقایسه با نیروهای چسبندگی “کوچک” هستند به طور مشخصه جریان لایه ای است.

در آیرودینامیک و آزمون های مدل، بهتر است داده های فشار را به شکل بی‌بعد نشان داد. نسبت زیر:

تشکیل داده می شود، که در آن فشار محلی منهای فشار جریان آزاد است، و V خواص جریان آزاد هستند. این نسبت به نام لئونارد اویلر، ریاضیدان سوئیسی که اکثر کارهای تحلیلی اولیه را در مکانیک سیالات انجام داد، خوانده می شود. اویلر اولین کسی است که نقش فشار را در حالت سیال تشخیص داد؛ عدد اویلر عبارت است از نسبت نیروهای فشاری به نیروهای اینرسی. (ضریب در مخرج وارد می‌شود تا فشار دینامیکی را بدهد). عدد اویلر را اغلب ضریب فشار، Cp، می نامند.

در مطالعه پدیده حفره‌زایی، اختلاف فشار به صورت گرفته می‌شود، که در آن شرایط جریان مایع هستند. و فشار بخار در دمای آزمایش است. پارامترهای بعد زیر را عدد حفره زایی می نامند،

ویلیام فرود یک آرشیتکت دریایی انگلیسی بود. همراه با پسرش، رابرت ادموند فرود، کشف کرد که پارامتر زیر

برای جریان ها با تاثیرات سطح آزاد مهم است. با مجذور کردن عدد فرود داریم:

که می توان آن را به عنوان نسبت نیروهای اینرسی به نیروهای گرانشی تفسیر کرد. طول، L، طول مشخصه توصیفی میدان جریان است. در حالت جریان در کانال باز، طول مشخصه عمق آب است؛ اعداد فرود کم تر از واحد نشان می دهد که جریان زیر بحرانی است و مقادیر بزرگ تر از واحد نشان می دهد که جریان فوق بحرانی است.

عدد و بر عبارت است از نسبت نیروهای اینرسی به نیروهای کشش سطحی. آن را می توان چنین نوشت:

در دهه 1870، فیزیکدان استرالیایی ارنست ماخ پارامتر زیر را دکرد:

که در آن V سرعت جریان و c سرعت صوت محلی است. تحلیل و آزمایش نشان می‌دهد که عدد ماخ پارامتری کلیدی است، تاثیرات تراکم ناپذیری را در یک جریان مشخص می کند. عدد ماخ را می توان چنین نوشت:

یا

آن را به عنوان نسبت نیروهای اینرسی به نیروهای ناشی از تراکم پذیری می توان تفسیر کرد. برای جریان کاملاً تراکم ناپذیر (در عرضی شرایط حتی مایعات کاملاً تراکم ناپذیر هستند)، . بنابراین M=0.

5- تشابه جریان و مطالعه های مدل

برای اینکه آزمون مدل مفید باشد باید داده هایی را بدهد که بتوان آنها را مقیاس بندی کرد و نیروها، و گشتاورها و بارهای دینامیکی موثر بر نمونه اصلی با اندازه کامل را به دست آورد. چه شرایطی باید برقرار باشد تا بین جریان مدل و جریان نمونه اصلی تشابه وجود داشته باشد؟

شاید بدیهی ترین شرط این است که مدل و نمونه اصلی باید به دور هندسی متشابه باشند. تشابه هندسی ایجاب می کند که مدل و نمونه اصلی دارای شکل یکسان باشند، و تمام ابعاد خطی مدل با تقریب مقیاس ثابتی به ابعاد متناظر نمونه اصلی ارتباط داده شوند.

شرط دوم این است که جریان مدل و جریان نمونه اصلی باید به طور سینماتیکی متشابه باشند. دو جریان وقتی به طور سینماتیکی متشابه هستند که سرعت ها در نقاط متناظر هم جهت باشند و مقدار آنها با یک ضریب مقیاس ثابت به هم ارتباط داده شوند. از این رو دو جریان که به طور سینماتیکی متشابه هستند دارای نقش های خط جریانی نیز هستند که با ضریب مقیاس ثابت به هم مربوط می شوند. از آنجا که مرزها خطوط جریان احاطه کننده تشکیل می دهند، جریان هایی که به طور سینماتیکی متشابه هستند باید به طور هندسی متشابه باشند.

اصولاً، تشابه سینماتیکی ایجاب می کند که برای به دست آوردن داده های بازدارندگی موثر بر یک جسم، از تونل باد با مقطع عرضی نامحدود استفاده شود تا عملکرد در یک میدان جریان محدود به درستی مدل بندی شود. در عمل، این محدودیت را به طور قابل توجه می توان تعدیل کرد، و از وسیله ای با اندازه منطقی استفاده کرد.

تشابه سینماتیکی ایجاب می کند که نوع جریان مدل و نوع جریان نمونه اصلی با هم یکسان باشند. اگر آثار تراکم ناپذیری یا حفره زایی، که نقش های جریان را به طور کیفی می توانند تغییر دهند، در جریان نمونه اصلی وجود نداشته باشند، در جریان مدل از وجود آنها باید جلوگیری کرد.

وقتی توزیع نیروها در دو جریان به صورتی باشد که در تمام نقاط متناظر، انواع نیروهای همسان با هم موازی باشند و مقدار آنها با ضریب مقیاس ثابت به هم مربوط شود، جریان ها به طور دینامیکی متشابه هستند.

شرایط تشابه دینامیکی بسیار محدود است: دو جریان باید هر دو تشابه هندسی و سینماتیکی را داشته باشند تا به طور دینامیکی متشابه باشند.

برای در نظر گرفتن شرایط لازم برای تشابه دینامیکی کامل، تمام نیروهایی که در جریان مهم هستند باید در نظر گرفته شوند. از این رو، تاثیرات نیروهای چسبندگی، نیروهای فشاری، نیروهای کشش سطحی و غیره، باید در نظر گرفته شود. شرایط آزمون باید طوری در نظر گرفته شود که تمام نیروهای مهم میان جریان های مدل و نمونه اصلی با ضریب مقیاس یکسان به هم ارتباط داده شود. وقتی تشابه دینامیکی وجود دارد، داده های اندازه گیری شده در یک جریان مدل را می توان به طور کمی به شرایط جریان نمونه اصلی ارتباط داد. در این صورت، شرایطی که تشابه دینامیکی بین جریان های مدل اصلی را برقرار می کنند چه هستند؟

برای یافتن گروه های بی‌بعد حاکم در یک پدیده جریان، از نظریه پی بوکینگهام می‌توان استفاده کرد؛ برای یافتن تشابه دینامیکی بین جریان های به طور هندسی متشابه، باید تمام این گروه های بی‌بعد به غیر از یکی را همانند قرار داد.

مثلاً در بررسی نیروی بازدارندگی موثر بر یک کره در مثال 1، با رابطه زیر شروع می کنیم:

نظریه پی بوکینگهام رابطه تابعی زیر را می دهد

در قسمت 4 نشان دادیم که پارامترهای بی‌بعد را به صورت نسبت نیروها می توان تفسیر کرد. از این رو، در بررسی جریان مدل و جریان نمونه اصلی پیرامون یک کره (جریان ها به طور هندسی متشابه هستند)، جریان ها به طور دینامیکی متشابه هستند اگر

به علاوه، اگر

در این صورت

و نتایج حاصل از مطالعه مدل را برای پیش بینی بازدارنگی موثر بر نمونه اصلی با اندازه کامل می توان به کار برد.

نیروی واقعی که سیال بر جسم وارد می کند در هر حالت یکسان نیست، اما مقدار بی‌بعد آن یکسان است. در صورت لزوم، می توان دو آزمایش را با استفاده از سیالات متفاوت انجام داد تا اعداد رینولدز با هم برابر شوند. مطابق مثال 4، برای سهولت آزمایش می توان داده های آزمون را در یک تونل باد در هوا اندازه گیری کرد و از نتایج برای پیش بینی نیروی بازدارندگی در آب استفاده کرد.

مثال 4 تشابه: نیروی بازدارندگی مبدل یک وسیله کاشف زیر دریایی.

بازدارندگی مبدل یک وسیله کاشف زیر دریایی قرار است از روی داده های آزمون در تونل باد تعیین شود. نمونه اصلی، کره ای به قطر mm300، باید با سرعت 5نات (مایل دریایی در ساعت، و یک مایل معادل 1852 متر است) در آب دریای حرکت کند. مدل به قطر mm150 است. سرعت لازم را برای آزمایش در هوا بیابید. اگر بازدارندگی مدل در شرایط آزمایش 24.8N باشد، بازدارندگی موثر بر نمونه اصلی را تخمین بزنید.

تحلیل مثال 4

داده: مبدل یک وسیله کاشف زیر دریایی قرار است در تونل باد آزمایش شود.

خواسته: (الف) (ب)

حل:

از آنجا که نمونه اصلی در آب عمل می کند و آزمایش مدل قرار است در هوا انجام شود، فقط اگر تاثیرات حفره زایی در جریان نمونه اصلی و تاثیرات تراکم ناپذیری در آزمایش مدل وجود نداشته باشد، نتایج مفیدی به دست می آید. در این شرایط

و آزمایش را باید در

انجام داد تا تشابه دینامیکی برقرار شود. برای آب دریا در ، و . در شرایط نمونه اصلی،

شرایط آزمایش مدل باید طوری باشد که این عدد رینولدز را برقرار کند. از این رو

برای هوا در شرایط استاندارد، و تونل باد باید در شرایط زیر عمل کند:


این سرعت آنقدر کم است که بتوان از تاثیرات تراکم ناپذیری صرف نظر کرد. در این شرایط آزمایش، جریان مدل و جریان نمونه اصلی به طور دینامیکی متشابه هستند. از این رو،

اگر انتظار حفره زایی برود- اگر مبدل خورشیدی در سرعت زیاد نزدیک سطح آزاد آب دریا عمل می کرد- در این صورت از روی آزمایش مدل در هوا نمی توانستیم نتایج مفیدی به دست آوریم.

این‌مساله محاسبه مقادیر نمونه اصلی را از روی داده های آزمایش نشان می‌دهد.

5-1- تشابه غیر کامل

نشان داده ایم که برای یافتن تشابه کامل دینامیکی بین جریان های به طور هندسی متشابه باید تمام گروه های بی‌بعد مهم به جز یکی همانند باشند.

در حالت ساده مثال 4، همانند ساختن عدد رینولدز بین مدل و نمونه اصلی، تشابه دینامیکی را بین جریان ها برقرار می کرد. با آزمایش در هوا می توانستیم عدد رینولدز را دقیقاً همانند کنیم (در این حالت، با آزمایش در تونل آب نیز می‌توانستیم این کار را انجام دهیم). نیروی بازدارندگی موثر بر کره در واقع به طبیعت جریان در لایه مرزی بستگی دارد. بنابراین، تشابه هندسی ایجاب می کند که زبری نسبی سطح مدل و نمونه اصلی یکسان باشند. این معنی می دهد که زبری نسبی نیز پارامتری است که باید بین حالت های مدل و نمونه اصلی همانند باشد. اگر فرض کنیم که مدل با دقت ساخته شده است، مقادیر اندازه گیری شده بازدارندگی از روی آزمایش های مدل را می توان مقیاس بندی کرد و بازدارندگی را در شرایط عمل اصلی به دست آورد.

در اغلب مطالعه های مدل، به دست آوردن تشابه دینامیکی مستلزم این است که چند گروه بی‌بعد همانند باشند. در بعضی حالت ها، تشابه دینامیکی کامل بین مدل و نمونه اصلی انجام پذیر نیست. نمونه ای از چنین حالتی، تعیین نیروی بازدارندگی (مقاومت) موثر بر یک کشتی سطحی است. مقاومت موثر بر یک کشتی سطحی از اصطکاک جداری موثر بر بدنه (نیروهای چسبنده) از مقاومت موج سطحی (نیروهای گرانشی) ناشی می شود.


تشابه کامل دینامیکی ایجاب می کند که اعداد رینولدز و فرود، هر دو، بین مدل و نمونه اصلی همانند باشند.

به طور کلی نمی توان مقاومت موج را به طور تحلیلی پیش بینی کرد، بنابراین باید آن را مدل بندی کرد. این موضوع ایجاب می کند:

برای همانند بودن اعداد فرود بین مدل و نمونه اصلی باید نسبت سرعت زیر را داشته باشیم:

نقش های موج سطحی به طور دینامیکی متشابه باشند.

برای هر مقیاس طول مدل، همانند ساختن اعداد فرود نسبت سرعت را می دهد. فقط چسبندگی سینماتیکی را می توان تغییر داد اعداد رینولد همانند شوند. از این رو رابطه

شرایط زیر را می دهد

از نسبت سرعتی که از روی همانندی اعداد رینولدز به دست آمده استفاده کنیم، تساوی اعداد رینولدز نسبت چسبندگی سینماتیکی زیر را می دهد

مساوی (یک مقیاس طول نمونه ای برای آزمایش های طول کشتی) باشد، در این صورت باید باشد. شکل 3 نشان می دهد که جیوه تنها مایعی است که چسبندگی سینماتیکی آن از چسبندگی سینماتیکی آب کم تر است. ولی، چسبندگی سینماتیکی جیوه فقط در حدود یک دهم چسبندگی سینماتیکی آب است. بنابراین نسبت چسبندگی سینماتیکی لازم همانندی اعداد رینولدز را نمی توان به دست آورد.

آب تنها سیال عملی برای آزمایش های مدل برای جریان با سطح آزاد است بنابراین، برای به دست آوردن تشابه کامل دینامیکی نمونه اصلی را آزمایش کرد. ولی، حتی اگر نتوان به تشابه کامل سینماتیکی دست یافت، مطالعه های مدل اطلاعات مفیدی می‌دهد.

شکل 1 داده های مربوط به آزمایش مدل یک کشتی با مقیاس 8 : 1 را نشان می دهد که در آزمایشگاه هیدرودینامیکی آکادمی دریایی آمریکا انجام شده است. در نمودار، داده‌های ضریب مقاومت برحسب عدد فرود نشان داده شده است. نقاط چهارگوش از روی مقادیر مقاومت کل اندازه گیری شده در آزمایش محاسبه شده اند.

داده ها از:

U.S.Naval Academy Hydromechanics Laboratory, Courtesy of Professor Bruce Johnson

با استفاده از روش زیر، مقاومت کشتی با مقیاس کامل را زا روی نتایج آزمایش مدل اصلی می توان محاسبه کرد. نقش موج های سطحی، و از این رو مقاومت موج، بین مدل و نمونه اصلی در اعداد فرود متناظر تطبیق داده می شود. مقاومت موج مدل به صورت تفاضل بین بازدارندگی کل و بازدارندگی اصطکاک تخمینی محاسبه می شود. (ضریب های مقاومت تخمینی موج برای مدل به صورت دایره رسم شده اند).

با استفاده از مقیاس بندی فرود، ضریب های مقاومت موج را در مدل و نمونه اصلی مساوی هم قرار می دهیم و مقاومت موج نمونه اصلی را حساب می کنیم. در شکل 7-2 نقاط دایره ای برای نمونه اصلی با ضریب های مدل در اعداد رینولدز متناظر همسان هستند. ضریب های بازدارندگی اصطکاک جداری که برای نمونه اصلی به طور تحلیلی حساب می شود، و در شکل 7-2 با لوزی نشان داده شده است، با ضریب‌های بازدارندگی موج جمع می شود و ضریب های بازدارندگی کل نمونه اصلی را می دهد.

از آنجا که در آزمایش های مدل کشتی های سطحی نمی توان عدد رینولدز را ]میان مدل و نمونه اصلی[ همانند کرد، رفتار لایه مرزی برای مدل و نمونه اصلی یکسان نیست. عدد رینولدز مدل فقط برابر مقدار عدد رینولدز نمونه است، از این رو گسترش جریان لایه ای در لایه مرزی روی مدل، با همان نسبت، خیلی زیاد است. در روش گفته شده این طور فرض می شود که رفتار لایه مرزی را می توان مقیاس بندی کرد. برای انجام این کار، لایه مرزی مدل “تحریک” می شود تا در مکانی متناظر با رفتار کشتی اصلی، متلاطم شود. در شکل 7-1، گل میخ هایی که برای تحریک کردن لایه مرزی در نتایج آزمون مدل به کار رفتند نشان داده شده است.

داده‌ها از روی:

U.S.Naval Academy Hydromechanics Laboratory, Courtesy of Professor Bruce Johnson

گاهی اوقات ضرایب نمونه اصلی که از روی داده های آزمایش مدل حساب می‌شود، تصحیح می شوند. این تصحیح، زبری، تموج و ناهمواری ها را که مسلماً در نمونه اصلی بارزتر از مدل هستند در نظر می گیرد. مقایسه بین داده های حاصل از آزمایش‌های مدل و اندازه گیری های انجام شده در نمونه با مقیاس کامل نشان می‌دهد که دقت کلی باید در محدوده درصد باشد.

برای مدل بندی رودخانه ها و بندرگاه ها، عدد فرود پارامتری مهم است. در این شرایط، به دست آوردن تشابه کامل عملی نیست. با استفاده از یک مقیاس مدل منطقی می‌توان از عمق های آب بسیار کوچک استفاده کرد. تاثیرات نسبی نیروهای چسبنده و نیروی کشش سطحی در جریان مدل بسیار بیش تر از جریان در نمونه اصلی است. در نتیجه، از مقیاس های طول متفاوت در جهت های عمودی و افقی استفاده می شود. با استفاده از اجزای زبری مصنوعی، نیروهای چسبنده در جریان مدل عمیق تر افزایش می‌یابد.


مدلسازی و تشکیل هیدرات گازی

با توجه به افزایش سهم گاز طبیعی در بازار مصرف جهانی، توجه به روش های انتقال بدون خط لوله افزایش یافته است بیشتر روش هایی مورد توجه قرار گرفته است
دسته بندی مهندسی شیمی
فرمت فایل doc
حجم فایل 1260 کیلو بایت
تعداد صفحات فایل 46
مدلسازی و تشکیل هیدرات گازی

فروشنده فایل

کد کاربری 15

با توجه به افزایش سهم گاز طبیعی در بازار مصرف جهانی، توجه به روش های انتقال بدون خط لوله افزایش یافته است. بیشتر روش هایی مورد توجه قرار گرفته است که ظرفیت ذخیره سازی در آن ها بالا و از نظر اقتصادی مقرون به صرفه باشند. یکی از ا ین روش ها که امروزه بسیار مورد توجه است، روش حمل گاز توسط هیدرات میباشد. علاوه بر این امروزه کاربردهای صنعتی د یگری نیز بر ای این پد یده مطرح شده است و سبب شده است که توجه به آن در صنعت بیشتر از پیش باشد . در پژوهش حاضر برای آشنایی بیشتر با این پدیده در فصل اول هیدرات گاز ی معرفی شده، ساختارهای رایج آن و مطالعات عمده ای که در این زمینه صورت پذیرفته است ، به صورت مشروح بیان شده است . با توجه به مشکلاتی که در زمینه استفاده از آن در صنعت وجود دارد، محققیق افزودن مواد بهبود دهنده به سیستم تشکیل هیدرات را پیشنهاد نموده اند. از این رو در فصل دوم به معرفی مواد بهبود دهنده و چگونگی تأ ثیرگذاری آن ها پرداخته شده است . در فصل سوم مدل پا یه محاسبات هیدرات معرفی شده سپس این مدل در حضور مواد بهبود دهنده مانند مواد فعال سطحی و هیدروتروپها اصلاح شده است، تا مدل پیشگوتری حاصل شود . در فصل چهارم نتا یج حاصل از مدلسازی برای سیستمهای مختلف تشکیل هیدرات برای مثال سیستم آب خالص، سیستمهای شامل ماده بازدارنده متانول و سیستمهای شامل انواع مواد بهبود دهنده رایج با نتایج تجربی مقایسه شده است و نشان داده شده است که مدل با دقت بالایی قادر است فشار تشکیل هیدرات را در دما ی مورد نظر پیشبینی نماید. در فصل پنجم نتا یج کلی حاصل از ا ین پژوهش ارائه شده است و در ادامه پیشنهاداتی جهت ادامه این تحقیق برای علاقمندان به مطالعه این پدیده بیان گردیده است.

فهرست مطالب

چکیده1

مقدمه. 2

حفرات تشکیل دهنده هیدرات.. 5

دوازده وجهی با سطوح پنج ضلعی. 6

چهارده وجهی. 6

شانزده وجهی. 7

رفتار فازی تشکیل هیدرات :12

فرآیند تشکیل و تجزیه هیدرات :15

شرایط تشکیل هیدرات و ویژگی عمومی مولکولهای مهم ان :18

طبیعت شیمیایی مولکولهای مهم ان :19

بررسی هندسی مولکولهای مهم ان :19

هیدراتبه عنوان معضلی در صنعت نفت و گاز :20

فواید هیدرات گازی :21

بهبود شرایط تشکیل هیدرات گازی.. 23

مواد بهبود دهنده هیدرات :25

مواد فعال سطحی :26

تشکیل مایسل توسط مواد فعال سطحی :27

هیدروتروپ ها :30

اثر مواد بهبود دهنده بر فرآیند تشکیل هیدرات :33

مکانیزم تاثیر گذاری مواد بهبود دهنده :34

فصل سوم39

نتیجه گیری و پیشنهادها39

منابع و مآخذ :40

منابع لاتین 41


مدلسازی و حل مسئله زمانبندی جریان کارگاهی با زمانهای تنظیم وابسته به توالی

برنامه ریزی1 عبارتست از تصمیم گیری برای آینده و برنامه ریزی تولید به معنی تعیین استراتژی تولید به جهت نحوه تخصیص خطوط تولیدی برای پاسخگویی به سفارشات می باشد از برجسته ترین موارد در تهیه برنامه زمانی تولید جهت خطوط تولیدی، تعیین اندازه انباشته و توالی سفارشات و نحوه تخصیص منابع در طول زمان است
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 346 کیلو بایت
تعداد صفحات فایل 119
مدلسازی و حل مسئله زمانبندی جریان کارگاهی با زمانهای تنظیم وابسته به توالی

فروشنده فایل

کد کاربری 15

برنامه ریزی1 عبارتست از تصمیم گیری برای آینده و برنامه ریزی تولید به معنی تعیین استراتژی تولید به جهت نحوه تخصیص خطوط تولیدی برای پاسخگویی به سفارشات می باشد. از برجسته ترین موارد در تهیه برنامه زمانی تولید جهت خطوط تولیدی، تعیین اندازه انباشته و توالی سفارشات و نحوه تخصیص منابع در طول زمان است [1].

ما همواره در مکالمات روزمره خود از اصطلاح زمانبندی2 استفاده می کنیم، هر چند که ممکن است همیشه تعریف مناسبی از آن در ذهن نداشته باشیم. در حقیقت مفهوم آشنایی که ما عموما از آن استفاده می کنیم فهرستی از برنامه هاست و نه زمانبندی. مستندات و برنامه های ملموس همچون برنامه کلاسی، برنامه حرکت اتوبوس و غیره. یک برنامه معمولا به ما می گوید کی وقایع اتفاق می افتد. جواب به سئوالاتی که با کی شروع می شوند، معمولا اطلاعاتی در مورد زمان به ما می دهد. حرکت اتوبوس از ساعت 6 شروع می شود و تا ساعت 20 ادامه دارد. شام در ساعت 21 سرو خواهد شد و مواردی از این دست. در برخی موارد نیز پاسخ ها به توالی وقایع اشاره می کند. اتوبوس پس از روشن شدن هوا حرکت می کند و شام پس از نظافت سالن سرو می شود. بنابراین سئوالاتی که با کی شروع می شوند، با اطلاعاتی در مورد زمان و یا توالی وقایع، که از برنامه بدست می آید پاسخ داده می شوند. فرآیند ایجاد برنامه، تحت عنوان زمانبندی شناخته می شود. هر چند که عموما برنامه ها ملموس و ساده به نظر می رسند، اما فرآیند ایجاد آنها بدون درک عمیقی از زمانبندی، پیچیده است. تهیه شام یک مسئله زمانبندی روزمره است که نیازمند انجام دادن کسری از فعالیتها است. مسائل زمانبندی در صنعت نیز ساختار مشابهی دارند. آنها شامل مجموعه ای از فعالیتها و مجموعه ای از منابع موجود جهت انجام آن فعالیتها است. همچنین در صنعت برخی از تصمیمات تحت عنوان تصمیمات برنامه ریزی شناخته می شوند. فرآیند برنامه ریزی، منابع لازم جهت تولید و مجموعه فعالیتهای مورد نیاز جهت زمانبندی را تعیین می کند. در فرآیند زمانبندی، ما نیازمند تعیین نوع و مقدار هر منبع هستیم و نتیجتا می توانیم زمان شدنی اتمام کارها را مشخص کنیم [2]. زمانبندی، فرآیند تخصیص منابع محدود به فعالیت ها در طول زمان، جهت بهینه سازی یک و یا چند تابع هدف است. منابع شامل نیروی انسانی، ماشین آلات، مواد، تجهیزات کمکی و غیره می باشند.

فهرست مطالب

فصل ۱٫ ۱

کلیات.. ۱

۱-۱- مقدمه. ۱

۱-۲- محدوده تحقیق و اهداف آن.. ۹

۱-۳- مرور ادبیات.. ۱۳

فصل ۲٫ ۲۴

مدلسازی و حل جنبه ای جدید از مسئله زمانبندی جریان کارگاهی جایگشتی.. ۲۴

۲-۱- مقدمه. ۲۴

۲-۲- مدلسازی مسئله. ۲۴

۲-۳- الگوریتم ابتکاری جهت حل مسئله. ۲۸

۲-۴- نتایج محاسباتی.. ۳۴

۲-۴-۱- موارد تستی.. ۳۴

۲-۴-۲- کارآمدی روشهای ابتکاری.. ۳۶

۲-۵- نتیجه گیری.. ۴۰

فصل ۳٫٫ ۴۱

حل مسائل زمانبندی جریان کارگاهی جایگشتی با بکارگیری روشهای فراابتکاری ترکیبی.. ۴۱

۳-۱- مقدمه. ۴۱

۳-۲- الگوریتم ژنتیک… ۴۱

۳-۳- مدل ریاضی.. ۴۳

۳-۴- الگوریتم ژنتیک ترکیبی.. ۴۵

۳-۴-۱- جوابهای اولیه. ۴۶

۳-۴-۲- بهبود. ۴۶

۳-۴-۳- ارزیابی.. ۴۸

۳-۴-۴- انتخاب.. ۴۸

۳-۴-۵- عملگرهای ژنتیکی.. ۵۰

۳-۴-۵-۱- درجه عبور۵. ۵۰

۳-۴-۵-۲- جهش ابتکاری.. ۵۲

۳-۴-۵-۳- جهش وارونه. ۵۲

۳-۵- نتایج محاسباتی.. ۵۳

۳-۶- بهینه سازی جامعه مورچگان.. ۵۶

۳-۷- الگوریتم بهینه سازی جامعه مورچگان ترکیبی.. ۵۷

۳-۷-۱- تشخیص اولیه. ۵۷

۳-۷-۲- قانون انتقال۱ ۶۰

۳-۷-۳- جستجوی محلی.. ۶۰

۳-۷-۴- به روز رسانی فرومون ها ۶۰

۳-۷-۵- معیار توقف.. ۶۲

۳-۸- نتایج محاسباتی.. ۶۲

۳-۹- الگوریتم الکترومغناطیس… ۶۹

۳-۱۰- الگوریتم الکترومغناطیس ترکیبی.. ۷۲

۳-۱۱- نتایج محاسباتی.. ۷۵

۳-۱۲- نتیجه گیری.. ۸۰

فصل ۴٫٫ ۸۳

مسئله فروشنده دوره گرد. ۸۳

۴-۱- مقدمه. ۸۳

۴-۲- تعریف مسئله. ۸۵

۴-۳- کاربرد و ارتباط با مسائل زمانبندی.. ۸۵

۴-۴- مدل ریاضی.. ۸۶

۴-۵- روش حل.. ۸۸

۴-۶- نتایج محاسباتی.. ۸۸

۴-۷ نتیجه گیری.. ۹۰

فصل ۵٫ ۹۱

نتیجه گیری و پیشنهادات برای مطالعات و پژوهش های آتی.. ۹۱

۵-۱- نتیجه گیری.. ۹۱

۵-۲- پیشنهادها ۹۶

۶- منابع.. ۹۷


مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است
دسته بندی برق
فرمت فایل doc
حجم فایل 4266 کیلو بایت
تعداد صفحات فایل 143
مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

فروشنده فایل

کد کاربری 1024

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

چکیده

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

کلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

Key words: Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

فهرست مطالب

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

فهرست شکلها

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

صفحه 5

شکل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شکل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

صفحه 9

شکل (2-1) ترانسفورماتور

صفحه 14

شکل (2-2) ترانسفورماتور ایده ال

صفحه 14

شکل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شکل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شکل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شکل (2-10) رابطه بین و

صفحه 30

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شکل (2-12) رابطه بین و

صفحه 32

شکل (2-13) رابطه بین و

صفحه 32

شکل (2-14) منحنی مدار باز با مقادیر rms

صفحه 36

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شکل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شکل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شکل (2-19) میزان خطای استفاده از منحنی rms

صفحه 41

شکل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شکل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

صفحه 47

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

صفحه 49

شکل (3-1) دیاگرام فازوری خطاها

صفحه 62

شکل (3-2) شکل موج ولتاژ Vab

صفحه 63

شکل (3-3) شکل موج ولتاژ Vbc

صفحه 63

شکل (3-4) شکل موج ولتاژ Vca

صفحه 63

شکل (3-5) شکل موج ولتاژ Vab

صفحه 63

شکل (3-6) شکل موج جریان iA

صفحه 64

شکل (3-7) شکل موج جریان iB

صفحه 64

شکل (3-8) شکل موج جریان iA

صفحه 64

شکل (3-9) شکل موج جریان iA

صفحه 64

شکل (3-10) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شکل (3-11) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شکل (3-12) شکل موجهای جریان ia , ib , ic

صفحه 68

شکل (3-13) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-14) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-15) شکل موجهای جریان , iB iA

صفحه 69

شکل (3-16) شکل موج جریان iA

صفحه 70

شکل (3-16) شکل موج جریان iB

صفحه 70

شکل (3-17) شکل موج جریان iC

صفحه 70

شکل (3-18) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شکل (3-19) شکل موجهای جریان ia , ib , ic

صفحه 71

شکل (3-20) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شکل (3-21) شکل موجهای جریان ia , ib , ic

صفحه 73

شکل (3-22) شکل موجهای جریان ia , ib , ic

صفحه 74

شکل (3-23) شکل موج ولتاژ Va

صفحه 74

شکل (3-24) شکل موج ولتاژ Vb

صفحه 74

شکل (3-25) شکل موج ولتاژ Vc

صفحه 74

شکل (3-26) شکل موج جریانiA

صفحه 74

شکل (3-27) شکل موج جریان iB

صفحه 74

شکل (3-28) شکل موج جریان iC

صفحه 74

شکل (3-29) شکل موج جریانiA

صفحه 75

شکل (3-30) شکل موج جریان iB

صفحه 75

شکل (3-31) موج جریان iC

صفحه 75

شکل (3-32) شکل موج جریانiA

صفحه 75

شکل (3-33) شکل موج جریان iB

صفحه 75

شکل (3-34) شکل موج جریان iC

صفحه 75

شکل (3-35) شکل موج ولتاژ Va

صفحه 76

شکل (3-36) شکل موج ولتاژ Vb

صفحه 76

شکل (3-37) شکل موج ولتاژ Vc

صفحه 76

شکل (3-38) شکل موج جریانiA

صفحه 76

شکل (3-39) شکل موج جریان iB

صفحه 76

شکل (3-40) شکل موج جریان iC

صفحه 76

شکل (3-41) شکل موج جریانiA

صفحه 76

شکل (3-42) شکل موج جریان iB

صفحه 76

شکل (3-43) شکل موج جریان iC

صفحه 76

شکل (3-44) شکل موج ولتاژ Va

صفحه 77

شکل (3-45) شکل موج ولتاژ Vb

صفحه 77

شکل (3-46) شکل موج ولتاژ Vc

صفحه 77

شکل (3-47) شکل موج جریانiA

صفحه 77

شکل (3-48) شکل موج جریان iB

صفحه 77

شکل (3-49) شکل موج جریان iC

صفحه 77

شکل (3-50) شکل موج جریانiA

صفحه 77

شکل (3-51) شکل موج جریان iB

صفحه 77

شکل (3-52) شکل موج جریان iC

صفحه 77

شکل (3-53) شکل موج ولتاژ Va

صفحه 78

شکل (3-54) شکل موج ولتاژ Vb

صفحه 78

شکل (3-55) شکل موج ولتاژ Vc

صفحه 78

شکل (3-56) شکل موج جریانiA

صفحه 78

شکل (3-57) شکل موج جریان iB

صفحه 78

شکل (3-58) شکل موج جریان iC

صفحه 78

شکل (3-59) شکل موج جریانiA

صفحه 78

شکل (3-60) شکل موج جریان iB

صفحه 78

شکل (3-61) شکل موج جریان iC

صفحه 78

شکل (3-62) شکل موج ولتاژ Va

صفحه 79

شکل (3-63) شکل موج ولتاژ Vb

صفحه 79

شکل (3-64) شکل موج ولتاژ Vc

صفحه 79

شکل (3-65) شکل موج جریانiA

صفحه 79

شکل (3-66) شکل موج جریان iB

صفحه 79

شکل (3-67) شکل موج جریان iC

صفحه 79

شکل (3-68) شکل موج جریانiA

صفحه 79

شکل (3-69) شکل موج جریان iB

صفحه 79

شکل (3-70) شکل موج جریان iC

صفحه 79

شکل (3-71) شکل موج ولتاژ Va

صفحه 80

شکل (3-72) شکل موج ولتاژ Vb

صفحه 80

شکل (3-73) شکل موج ولتاژ Vc

صفحه 80

شکل (3-74) شکل موج جریانiA

صفحه 80

شکل (3-75) شکل موج جریان iB

صفحه 78

شکل (3-76) شکل موج جریان iC

صفحه 80

شکل (3-77) شکل موج جریانiA

صفحه 80

شکل (3-78) شکل موج جریان iB

صفحه 80

شکل (3-79) شکل موج جریان iC

صفحه 80

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-114) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-130) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-131) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-132) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-133) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-134) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-135) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-136) شکل موجهای ولتاژ) (kV

صفحه 109

شکل (3-137) شکل موجهای ولتاژ) (kV

صفحه 110

شکل (3-138) شکل موجهای جریان (kA)

صفحه 111

شکل (3-139) شکل موجهای ولتاژ) (kV

صفحه 112

شکل (3-140) شکل موجهای ولتاژ) (kV

صفحه 113

شکل (3-141) شکل موجهای جریان (kA)

صفحه 114

شکل (3-142) شکل موجهای جریان (kA)

صفحه 115

شکل (3-143) شکل موجهای جریان (kA)

صفحه 116

شکل (3-144) شکل موجهای جریان (kA)

صفحه 117

شکل (3-145) شبکه 14 باس IEEE

صفحه 118


مدل آماده کشتی در سالیدورک

دانلود مدل آماده کشتی در سالیدورک
دسته بندی فنی و مهندسی
فرمت فایل zip
حجم فایل 44741 کیلو بایت
تعداد صفحات فایل 1
مدل آماده کشتی در سالیدورک

فروشنده فایل

کد کاربری 9

این محصول فایل آماده (قفل شده) کشتی درسالیدورکس می باشد همانطور که گفته شد به لایه های طراحی دسترسی ندارید و این فایل برای دوستانی که به این مدل ها جهت انیمیشن سازی و ... نیاز دارند ارائه شده است، همچنین شما می توانید خروجی های دیگری از این مدل برای نرم افزارهای دیگری مانند 3 دی مکس و .. بگیرید.


Multiphysics Modeling Using COMSOL

کتاب مدلسازی بکمک کامسول تحت عنوان Multiphysics Modeling Using COMSOL
دسته بندی فنی و مهندسی
فرمت فایل pdf
حجم فایل 32655 کیلو بایت
تعداد صفحات فایل 871
Multiphysics Modeling Using COMSOL

فروشنده فایل

کد کاربری 9

این محصول کتابی است که همانطور که از نامش پیداست دو هدف را دنبال می کند

مدل سازی محیط های مالتی فیزیک

مدلسازی با نرم افزار کامسول

یعنی شما با این کتاب با دو مبحث پر طرفدار آشنا خواهید شد.

این کتاب به زبان اصلی است.


مدلسازی و شبیه سازی سوئیچ MPLSو بررسی مقایسه ای نرم افزارهای موجود

امروزه سرعت بیشتر و کیفیت سرویس بهتر مهمترین چالش های دنیای شبکه می باشند تلاشهای زیادی که در این راستا در حال انجام می باشد،
دسته بندی برق
فرمت فایل doc
حجم فایل 205 کیلو بایت
تعداد صفحات فایل 99
مدلسازی و شبیه سازی سوئیچ MPLSو بررسی مقایسه ای نرم افزارهای موجود

فروشنده فایل

کد کاربری 15

امروزه سرعت بیشتر و کیفیت سرویس بهتر مهمترین چالش های دنیای شبکه می باشند. تلاشهای زیادی که در این راستا در حال انجام می باشد، منجر به ارائه فنآوری ها، پروتکل ها و روشهای مختلف مهندسی ترافیک شده است. در این پایان نامه بعد از بررسی آنها به معرفی MPLS که به عنوان یک فنآوری نوین توسط گروه IETF ارائه شده است، خواهیم پرداخت. سپس به بررسی انواع ساختار سوئیچ های شبکه خواهیم پرداخت و قسمتهای مختلف تشکیل دهنده یک سوئیچMPLS را تغیین خواهیم کرد. سرانجام با نگاهی به روشهای طراحی و شبیه سازی و نرم افزارهای موجود آن، با انتخاب زبان شبیه سازی SMPL، به شبیه سازی قسمتهای مختلف سوئیچ و بررسی نتایج حاصل می پردازیم. همچنین یک الگوریتم زمانبندی جدید برای فابریک سوئیچ های متقاطع با عنوان iSLIP اولویت دار بهینه معرفی شده است که نسبت به انواع قبلی دارای کارآیی بسیار بهتری می باشد.

فهرست مطالب

فصل اول: کیفیت سرویس و فنآوری های شبکه 1

1-1- مقدمه 1

1-2- کیفیت سرویس در اینترنت 1

1-2-1- پروتکل رزور منابع در اینترنت 3

1-2-2- سرویس های متمایز 4

1-2-3- مهندسی ترافیک 6

1-2-4- سوئیچنگ برحسب چندین پروتکل 9

1-3- مجتمع سازی IP وATM 9

1-3-1- مسیریابی در IP 12

1-3-2- سوئیچینگ 13

1-3-3- ترکیب مسیریابی و سوئیچینگ 14

1-3-4- MPLS 20

فصل دوم: فنآوریMPLS 23

2-1- مقدمه 23

2-2- اساس کار MPLS 24

2-2-1- پشته برچسب 26

2-2-2- جابجایی برچسب 27

2-2-3- مسیر سوئیچ برچسب (LSR)27

2-2-4- کنترل LSP 29

2-2-5- مجتمع سازی ترافیک 30

2-2-6- انتخاب مسیر 30

2-2-7- زمان زندگی (TTL)31

2-2-8- استفاده از سوئیچ های ATM به عنوان LSR 32

2-2-9- ادغام برچسب 32

2-2-10- تونل 33

2-3- پروتکل های توزیع برچسب در MPLS 34

فصل سوم: ساختار سوئیچ های شبکه35

3-1- مقدمه 35

3-2- ساختار کلی سوئیچ های شبکه 35

3-3- کارت خط 40

3-4- فابریک سوئیچ 42

3-4-1- فابریک سوئیچ با واسطه مشترک 43

3-4-2 فابریک سوئیچ با حافظه مشترک 44

3-4-3- فابریک سوئیچ متقاطع 45

فصل چهارم: مدلسازی و شبیه‌سازی یک سوئیچ MPLS 50

4-1- مقدمه 50

4-2- روشهای طراحی سیستمهای تک منظوره 50

4-3- مراحل طراحی سیستمهای تک منظوره 52

4-3-1- مشخصه سیستم 53

4-3-2- تایید صحت 53

4-3-3- سنتز 54

4-4 – زبانهای شبیه سازی 54

4-5- زبان شبیه سازی SMPL 56

4-5-1- آماده سازی اولیه مدل 58

4-5-2 تعریف و کنترل وسیله 58

4-5-3 – زمانبندی و ایجاد رخدادها60

4-6- مدلهای ترافیکی 61

4-6-1- ترافیک برنولی یکنواخت 62

4-6-2- ترافیک زنجیره ای 62

4-6-3- ترافیک آماری 63

4-7- مدلسازی کارت خط در ورودی 64

عنوان صفحه

4-8- مدلسازی فابریک سوئیچ 66

4-8-1- الگوریتم iSLIP 66

4-8-2- الگوریتم iSLIP اولویت دار71

4-8-3- الگوریتم iSLIP اولویت دار بهینه 76

4-9- مدلسازی کارت خط در خروجی 79

4-9-1 – الگوریتم WRR 80

4-9-2- الگوریتم DWRR 81

4-10- شبیه سازی کل سوئیچ 82

4-11- کنترل جریان 90

فصل پنجم: نتیجه گیری و پیشنهادات 93

5-1- مقدمه 93

5-2- نتیجه گیری 93

5-3- پیشنهادات 94

مراجع ......


روند مدلسازی یک نمونه قاب خمشی دو بعدی با مهاربند کابلی در Sap2000

روند مدلسازی یک نمونه قاب خمشی دو بعدی با مهاربند کابلی به صورت گام به گام
دسته بندی عمران
فرمت فایل docx
حجم فایل 1596 کیلو بایت
تعداد صفحات فایل 24
روند مدلسازی یک نمونه قاب خمشی دو بعدی با مهاربند کابلی در Sap2000

فروشنده فایل

کد کاربری 2120

روند مدل­سازی یک نمونه قاب خمشی دو بعدی با مهاربند کابلی به صورت گام به گام در نرم افزار SAP2000

در این فایل آموزشی بسیار عالی می خوانیم: ...

ابتدا از لیست واحدها در گوشه سمت راست پایین صفحه نمایش، واحد­ها را Kgf-m-C انتخاب کرده و از منوی فایل گزینه New Model انتخاب شده تا پنجره­ای مطابق شکل ... نمایش داده شود. دکمه 2D Frames را تیک زده و مشخصات مشابه شکل ... وارد می­‌شود.